3 resultados para Climatic Variability of the Mediterranean Paleo-circulation
em Glasgow Theses Service
Resumo:
During the late Miocene, exchange between the Mediterranean Sea and Atlantic Ocean changed dramatically, culminating in the Messinian Salinity Crisis (MSC). Understanding Mediterranean-Atlantic exchange at that time could answer the enigmatic question of how so much salt built up within the Mediterranean, while furthering the development of a framework for future studies attempting to understand how changes may have impacted global thermohaline circulation. Due to their association with specific water masses at different scales, radiogenic Sr, Pb, and Nd isotope records were generated from various archives contained within marine deposits to endeavour to understand better late Miocene Mediterranean-Atlantic exchange. The archives used include foraminiferal calcite (Sr), fish teeth and bone (Nd), dispersed authigenic ferromanganese oxyhydroxides (Nd, Pb), and a ferromanganese crust (Pb). The primary focus is on sediments preserved at one end of the Betic corridor, a gateway that once connected the Mediterranean to the Atlantic through southern Spain, although other locations are investigated. The Betic gateway terminated within several marginal sub-basins before entering the Western Mediterranean; one of these is the Sorbas Basin, a well-studied location whose sediments have been astronomically tuned at high temporal resolution, providing the necessary age control for sub-precessional resolution records. Since the climatic history of the Mediterranean is strongly controlled by precessional changes in regional climate, the aim was to produce records at high (sub-precessional) temporal resolution, to be able to observe clearly any precessional cyclicity driven by regional climate which could be superimposed over longer trends. This goal was achieved for all records except the ferromanganese crust record. The 87Sr/86Sr isotope record (Ch. 3) shows precessional frequency excursions away from the global seawater curve. As precessional frequency oscillations are unexpected for this setting, a numerical box model was used to determine the mechanisms causing the excursions. To enable parameterisation of model variables, regional Sr characteristics, data from general circulation model HadCM3L, and new benthic foraminiferal assemblage data are employed. The model results imply that the Sorbas Basin likely had a positive hydrologic budget in the late Miocene, very different to that of today. Moreover, the model indicates that the mechanism controlling the Sr isotope ratio of Sorbas Basin seawater was not restriction, but a lack of density-driven exchange with the Mediterranean. Beyond improving our understanding of how marginal Mediterranean sub-basins may evolve different isotope signatures, these results have implications for astronomical tuning and stratigraphy in the region, findings which are crucial considering the geological and climatic history of the late Miocene Mediterranean is based entirely on marginal deposits. An improved estimate for the Nd isotope signature of late Miocene Mediterranean Outflow (MO) was determined by comparing Nd isotope signatures preserved in the deeper Alborán Sea at ODP Site 978 with literature data as well as the signature preserved in the Sorbas Basin (Ch. 4; -9.34 to -9.92 ± 0.37 εNd(t)). It was also inferred that it is unlikely that Nd isotopes can be used reliably to track changes in circulation within the shallow settings characteristic of the Mediterranean-Atlantic connections; this is significant in light of a recent publication documenting corridor closure using Nd isotopes. Both conclusions will prove useful for future studies attempting to understand changes in Mediterranean-Atlantic exchange. Excursions to high values, with precessional frequency, are also observed in the radiogenic Pb isotope record for the Sorbas Basin (Ch. 5). Widening the scope to include locations further away from the gateways, records were produced for late Miocene sections on Sicily and Northern Italy, and similar precessional frequency cyclicity was observed in the Pb isotope records for these sites as well. Comparing these records to proxies for Saharan dust and available whole rock data indicates that, while further analysis is necessary to draw strong conclusions, enhanced dust production during insolation minima may be driving the observed signal. These records also have implications for astronomical tuning; peaks in Pb isotope records driven by Saharan dust may be easier to connect directly to the insolation cycle, providing improved astronomical tuning points. Finally, a Pb isotope record derived using in-situ laser ablation performed on ferromanganese crust 3514-6 from the Lion Seamount, located west of Gibraltar within the MO plume, has provided evidence that plume depth shifted during the Pliocene. The record also suggests that Pb isotopes may not be a suitable proxy for changes in late Miocene Mediterranean-Atlantic exchange, since the Pb isotope signatures of regional water masses are too similar. To develop this record, the first published instance of laser ablation derived 230Thexcess measurements are combined with 10Be dating.
Resumo:
The East Asian Monsoon (EAM) is an active component of the global climate system and has a profound social and economic impact in East Asia and its surrounding countries. Its impact on regional hydrological processes may influence society through industrial water supplies, food productivity and energy use. In order to predict future rates of climate change, reliable and accurate reconstructions of regional temperature and rainfall are required from all over the world to test climate models and better predict future climate variability. Hokkaido is a region which has limited palaeo-climate data and is sensitive to climate change. Instrumental data show that the climate in Hokkaido is influenced by the East Asian Monsoon (EAM), however, instrumental data is limited to the past ~150 years. Therefore down-core climate reconstructions, prior to instrumental records, are required to provide a better understanding of the long-term behaviour of the climate drivers (e.g. the EAM, Westerlies, and teleconnections) in this region. The present study develops multi-proxy reconstructions to determine past climatic and hydrologic variability in Japan over the past 1000 years and aid in understanding the effects of the EAM and the Westerlies independently and interactively. A 250-cm long sediment core from Lake Toyoni, Hokkaido was retrieved to investigate terrestrial and aquatic input, lake temperature and hydrological changes over the past 1000-years within Lake Toyoni and its catchment using X-Ray Fluorescence (XRF) data, alkenone palaeothermometry, the molecular and hydrogen isotopic composition of higher plant waxes (δD(HPW)). Here, we conducted the first survey for alkenone biomarkers in eight lakes in the Hokkaido, Japan. We detected the occurrence of alkenones within the sediments of Lake Toyoni. We present the first lacustrine alkenone record from Japan, including genetic analysis of the alkenone producer. C37 alkenone concentrations in surface sediments are 18µg C37 g−1 of dry sediment and the dominant alkenone is C37:4. 18S rDNA analysis revealed the presence of a single alkenone producer in Lake Toyoni and thus a single calibration is used for reconstructing lake temperature based on alkenone unsaturation patterns. Temperature reconstructions over the past 1000 years suggest that lake water temperatures varies between 8 and 19°C which is in line with water temperature changes observed in the modern Lake Toyoni. The alkenone-based temperature reconstruction provides evidence for the variability of the EAM over the past 1000 years. The δD(HPW) suggest that the large fluctuations (∼40‰) represent changes in temperature and source precipitation in this region, which is ultimately controlled by the EAM system and therefore a proxy for the EAM system. In order to complement the biomarker reconstructions, the XRF data strengthen the lake temperature and hydrological reconstructions by providing information on past productivity, which is controlled by the East Asian Summer monsoon (EASM) and wind input into Lake Toyoni, which is controlled by the East Asian Winter Monsoon (EAWM) and the Westerlies. By combining the data generated from XRF, alkenone palaeothermometry and the δD(HPW) reconstructions, we provide valuable information on the EAM and the Westerlies, including; the timing of intensification and weakening, the teleconnections influencing them and the relationship between them. During the Medieval Warm Period (MWP), we find that the EASM dominated and the EAWM was suppressed, whereas, during the Little Ice Age (LIA), the influence of the EAWM dominated with time periods of increased EASM and Westerlies intensification. The El Niño Southern Oscillation (ENSO) significantly influenced the EAM; a strong EASM occurred during El Niño conditions and a strong EAWM occurred during La Niña. The North Atlantic Oscillation, on the other hand, was a key driver of the Westerlies intensification; strengthening of the Westerlies during a positive NAO phase and weakening of the Westerlies during a negative NAO phase. A key finding from this study is that our data support an anti-phase relationship between the EASM and the EAWM (e.g. the intensification of the EASM and weakening of the EAWM and vice versa) and that the EAWM and the Westerlies vary independently from each other, rather than coincide as previously suggested in other studies.
Resumo:
Abstract The potential impacts of climate change and environmental variability are already evident in most parts of the world, which is witnessing increasing temperature rates and prolonged flood or drought conditions that affect agriculture activities and nature-dependent livelihoods. This study was conducted in Mwanga District in the Kilimanjaro region of Tanzania to assess the nature and impacts of climate change and environmental variability on agriculture-dependent livelihoods and the adaptation strategies adopted by small-scale rural farmers. To attain its objective, the study employed a mixed methods approach in which both qualitative and quantitative techniques were used. The study shows that farmers are highly aware of their local environment and are conscious of the ways environmental changes affect their livelihoods. Farmers perceived that changes in climatic variables such as rainfall and temperature had occurred in their area over the period of three decades, and associated these changes with climate change and environmental variability. Farmers’ perceptions were confirmed by the evidence from rainfall and temperature data obtained from local and national weather stations, which showed that temperature and rainfall in the study area had become more variable over the past three decades. Farmers’ knowledge and perceptions of climate change vary depending on the location, age and gender of the respondents. The findings show that the farmers have limited understanding of the causes of climatic conditions and environmental variability, as some respondents associated climate change and environmental variability with social, cultural and religious factors. This study suggests that, despite the changing climatic conditions and environmental variability, farmers have developed and implemented a number of agriculture adaptation strategies that enable them to reduce their vulnerability to the changing conditions. The findings show that agriculture adaptation strategies employ both planned and autonomous adaptation strategies. However, the study shows that increasing drought conditions, rainfall variability, declining soil fertility and use of cheap farming technology are among the challenges that limit effective implementation of agriculture adaptation strategies. This study recommends further research on the varieties of drought-resilient crops, the development of small-scale irrigation schemes to reduce dependence on rain-fed agriculture, and the improvement of crop production in a given plot of land. In respect of the development of adaptation strategies, the study recommends the involvement of the local farmers and consideration of their knowledge and experience in the farming activities as well as the conditions of their local environment. Thus, the findings of this study may be helpful at various levels of decision making with regard to the development of climate change and environmental variability policies and strategies towards reducing farmers’ vulnerability to current and expected future changes.