2 resultados para Cattle-microbiological disease
em Glasgow Theses Service
Resumo:
The PARABAN project has been a Scotland-wide initiative to develop and deliver farm-specific ‘best practice’ for the control of Mycobacterium avium ssp. paratuberculosis (MAP) in cattle using ‘Knowledge Exchange’. A range of partners have been involved, including nine ‘Champion Farms’. With input from the farmer, his/her vet and PARABAN advisors, a tailored monitoring and control programme was devised for each ‘Champion Farm’, taking into account the history of the disease on the farm, the physical facilities available and farmer objectives. Culling decisions based on live animal test results were incorporated into each farm-specific programme to complement the management programme already in place to maintain each herd. Results were analysed and discussed with all the partners throughout the project and then offered for wider scrutiny at farm open days. Feedback and questions from these open days have been used to complete the ‘Knowledge Exchange’ cycle. As a major component of the PARABAN project the author collected samples from all adult animals culled from ‘Champion Farms’ at slaughter or as fallen stock, irrespective of in-life MAP test status. These were then subjected to histopathological examination by experienced veterinary pathologists and the results compared with the results from in-life MAP testing. This was intended to evaluate the contribution slaughterhouse sampling could make towards decision making for disease control on farm and formed the main aim of this thesis. In total, samples of terminal ileum and draining lymph node were collected from three-hundred and fifty-two animals. A positive result on histopathology was defined as the presence of lesions typical of MAP and also the presence of acid-fast bacteria within the sections. There was found to be fair agreement between the overall results from histopathology and serum ELISA (Kappa = 0.33), though there appeared to be some variation in agreement between the tests on the individual ‘Champion Farms’. The presence of MAP was confirmed in seven of the eight farms which contributed animals to this study, despite sometimes prolonged efforts at controlling the disease. A separate study was undertaken to make use of the archives of the Scottish Centre for Production Animal Health and Food Safety at the Veterinary School, University of Glasgow. The archive contained records of cases from across southern Scotland and northern England. Analysis of the data generated from examination of these records suggested that MAP is widespread within the Scottish cattle herd and may well be increasing
Resumo:
Foot-and-mouth disease (FMD), a disease of cloven hooved animals caused by FMD virus (FMDV), is one of the most economically devastating diseases of livestock worldwide. The global burden of disease is borne largely by livestock-keepers in areas of Africa and Asia where the disease is endemic and where many people rely on livestock for their livelihoods and food-security. Yet, there are many gaps in our knowledge of the drivers of FMDV circulation in these settings. In East Africa, FMD epidemiology is complicated by the circulation of multiple FMDV serotypes (distinct antigenic variants) and by the presence of large populations of susceptible wildlife and domestic livestock. The African buffalo (Syncerus caffer) is the only wildlife species with consistent evidence of high levels of FMDV infection, and East Africa contains the largest population of this species globally. To inform FMD control in this region, key questions relate to heterogeneities in FMD prevalence and impacts in different livestock management systems and to the role of wildlife as a potential source of FMDV for livestock. To develop FMD control strategies and make best use of vaccine control options, serotype-specific patterns of circulation need to be characterised. In this study, the impacts and epidemiology of FMD were investigated across a range of traditional livestock-keeping systems in northern Tanzania, including pastoralist, agro-pastoralist and rural smallholder systems. Data were generated through field studies and laboratory analyses between 2010 and 2015. The study involved analysis of existing household survey data and generated serological data from cross-sectional livestock and buffalo samples and longitudinal cattle samples. Serological analyses included non-structural protein ELISAs, serotype-specific solid-phase competitive ELISAs, with optimisation to detect East African FMDV variants, and virus neutralisation testing. Risk factors for FMDV infection and outbreaks were investigated through analysis of cross-sectional serological data in conjunction with a case-control outbreak analysis. A novel Bayesian modeling approach was developed to infer serotype-specific infection history from serological data, and combined with virus isolation data from FMD outbreaks to characterise temporal and spatial patterns of serotype-specific infection. A high seroprevalence of FMD was detected in both northern Tanzanian livestock (69%, [66.5 - 71.4%] in cattle and 48.5%, [45.7-51.3%] in small ruminants) and in buffalo (80.9%, [74.7-86.1%]). Four different serotypes of FMDV (A, O, SAT1 and SAT2) were isolated from livestock. Up to three outbreaks per year were reported by households and active surveillance highlighted up to four serial outbreaks in the same herds within three years. Agro-pastoral and pastoral livestock keepers reported more frequent FMD outbreaks compared to smallholders. Households in all three management systems reported that FMD outbreaks caused significant impacts on milk production and sales, and on animals’ draught power, hence on crop production, with implications for food security and livelihoods. Risk factor analyses showed that older livestock were more likely to be seropositive for FMD (Odds Ratio [OR] 1.4 [1.4-1.5] per extra year) and that cattle (OR 3.3 [2.7-4.0]) were more likely than sheep and goats to be seropositive. Livestock managed by agro-pastoralists (OR 8.1 [2.8-23.6]) or pastoralists (OR 7.1 [2.9-17.6]) were more likely to be seropositive compared to those managed by smallholders. Larger herds (OR: 1.02 [1.01-1.03] per extra bovine) and those that recently acquired new livestock (OR: 5.57 [1.01 – 30.91]) had increased odds of suffering an FMD outbreak. Measures of potential contact with buffalo or with other FMD susceptible wildlife did not increase the likelihood of FMD in livestock in either the cross-sectional serological analysis or case-control outbreak analysis. The Bayesian model was validated to correctly infer from ELISA data the most recent serotype to infect cattle. Consistent with the lack of risk factors related to wildlife contact, temporal and spatial patterns of exposure to specific FMDV serotypes were not tightly linked in cattle and buffalo. In cattle, four serial waves of different FMDV serotypes that swept through southern Kenyan and northern Tanzanian livestock populations over a four-year period dominated infection patterns. In contrast, only two serotypes (SAT1 and SAT2) dominated in buffalo populations. Key conclusions are that FMD has a substantial impact in traditional livestock systems in East Africa. Wildlife does not currently appear to act as an important source of FMDV for East African livestock, and control efforts in the region should initially focus on livestock management and vaccination strategies. A novel modeling approach greatly facilitated the interpretation of serological data and may be a potent epidemiological tool in the African setting. There was a clear temporal pattern of FMDV antigenic dominance across northern Tanzania and southern Kenya. Longer-term research to investigate whether serotype-specific FMDV sweeps are truly predictable, and to shed light on FMD post-infection immunity in animals exposed to serial FMD infections is warranted.