4 resultados para Caregiver, burden, stroke, time
em Glasgow Theses Service
Resumo:
Background and aims: Advances in modern medicine have led to improved outcomes after stroke, yet an increased treatment burden has been placed on patients. Treatment burden is the workload of health care for people with chronic illness and the impact that this has on functioning and well-being. Those with comorbidities are likely to be particularly burdened. Excessive treatment burden can negatively affect outcomes. Individuals are likely to differ in their ability to manage health problems and follow treatments, defined as patient capacity. The aim of this thesis was to explore the experience of treatment burden for people who have had a stroke and the factors that influence patient capacity. Methods: There were four phases of research. 1) A systematic review of the qualitative literature that explored the experience of treatment burden for those with stroke. Data were analysed using framework synthesis, underpinned by Normalisation Process Theory (NPT). 2) A cross-sectional study of 1,424,378 participants >18 years, demographically representative of the Scottish population. Binary logistic regression was used to analyse the relationship between stroke and the presence of comorbidities and prescribed medications. 3) Interviews with twenty-nine individuals with stroke, fifteen analysed by framework analysis underpinned by NPT and fourteen by thematic analysis. The experience of treatment burden was explored in depth along with factors that influence patient capacity. 4) Integration of findings in order to create a conceptual model of treatment burden and patient capacity in stroke. Results: Phase 1) A taxonomy of treatment burden in stroke was created. The following broad areas of treatment burden were identified: making sense of stroke management and planning care; interacting with others including health professionals, family and other stroke patients; enacting management strategies; and reflecting on management. Phase 2) 35,690 people (2.5%) had a diagnosis of stroke and of the 39 co-morbidities examined, 35 were significantly more common in those with stroke. The proportion of those with stroke that had >1 additional morbidities present (94.2%) was almost twice that of controls (48%) (odds ratio (OR) adjusted for age, gender and socioeconomic deprivation; 95% confidence interval: 5.18; 4.95-5.43) and 34.5% had 4-6 comorbidities compared to 7.2% of controls (8.59; 8.17-9.04). In the stroke group, 12.6% of people had a record of >11 repeat prescriptions compared to only 1.5% of the control group (OR adjusted for age, gender, deprivation and morbidity count: 15.84; 14.86-16.88). Phase 3) The taxonomy of treatment burden from Phase 1 was verified and expanded. Additionally, treatment burdens were identified as arising from either: the workload of healthcare; or the endurance of care deficiencies. A taxonomy of patient capacity was created. Six factors were identified that influence patient capacity: personal attributes and skills; physical and cognitive abilities; support network; financial status; life workload, and environment. A conceptual model of treatment burden was created. Healthcare workload and the presence of care deficiencies can influence and be influenced by patient capacity. The quality and configuration of health and social care services influences healthcare workload, care deficiencies and patient capacity. Conclusions: This thesis provides important insights into the considerable treatment burden experienced by people who have had a stroke and the factors that affect their capacity to manage health. Multimorbidity and polypharmacy are common in those with stroke and levels of these are high. Findings have important implications for the design of clinical guidelines and healthcare delivery, for example co-ordination of care should be improved, shared decision-making enhanced, and patients better supported following discharge from hospital.
Resumo:
Introduction: Intravenous thrombolysis in acute ischaemic stroke with alteplase improves clinical outcomes, but it has limited efficacy and is associated with increased risk of intracranial haemorrhage. An improved tissue plasminogen activator, tenecteplase, was evidenced to be at least equally effective with lower risk of haemorrhage in acute myocardial infarction thrombolysis. To date, two completed phase II randomised controlled studies comparing tenecteplase and alteplase in acute ischaemic strokes showed variable results. Methods: A literature review of thrombolytic agents used in myocardial infarction and acute ischaemic stroke was performed, followed by a retrospective investigation of the bolus-to- infusion delay of alteplase administration. The main focus of this thesis is the report of our single centre phase II randomised controlled trial that compared tenecteplase (0.25mg/kg, maximum 25mg) and alteplase (0.9mg/kg, maximum 90mg, 10% as the initial bolus, following by one hour infusion with the rest of the dose) in acute ischaemic stroke thrombolysis using advanced imaging as biomarkers. Imaging comprised baseline computed tomography (CT), CT perfusion (CTP) and CT angiography (CTA), and CT+CTA at 24-48 hours. The primary end-point was penumbral salvage (CTP-defined penumbra volume minus follow-up CT infarct volume). A sub-study of coagulation and fibrinolysis analysis of the two agents was performed by comparing a group of coagulation variables measured pre-treatment, 3-12 hours, and 24±3 hours post thrombolysis. An individual patient data (IPD) meta-analysis was carried out using all three completed tenecteplase/alteplase comparison studies in stroke thrombolysis. We compared clinical outcomes including modified Rankin scale at 3 months, early neurological improvement at 24 hours, intracerebral haemorrhage rate and mortality at 3 months between all three tenecteplase doses (0.1mg/kg, 0.25 mg/kg, and 0.4mg/kg) examined and standard alteplase. Imaging outcomes including penumbra salvage, recanalisation rates were also compared using the data from the two studies that had advance imaging carried out. Results: Delay between the initial bolus and the subsequent infusion in administration of alteplase is common. This may reduce the likelihood of achieving a good functional outcome. Among the 104 patients recruited in ATTEST trial, 71 contributed to the imaging primary outcome. No significant differences were observed for penumbral salvage [68 (SD 28) % tenecteplase vs 68 (SD 23) % alteplase], mean difference 1% (95% confidence interval -10%, 12%, p=0·81) or for any secondary end-point. The SICH incidence (1/52, 2% vs 2/51, 4%, by SITS-MOST definition, p=0·55; by ECASS-2 definition, 3/52, 6% tenecteplase vs 4/51, 8% alteplase, p=0.59) did not differed significantly. There was a trend towards lower ICH risk in the tenecteplase group (8/52 tenecteplase, 15% vs 14/51 alteplase, 29%, p=0·091). Compared to baseline, alteplase caused significant hypofibrinogenaemia (p=0.002), prolonged Prothrombin Time (PT) (p=0.011), hypoplasminogenaemia (p=0.001) and lower Factor V (p=0.002) at 3-12 hours after administration with persistent hypofibrinogenaemia at 24h (p=0.011), while only minor hypoplasminogenaemia (P=0.029) was seen in the tenecteplase group. Tenecteplase consumed less plasminogen (p<0.001) and fibrinogen (p=0.002) compared with alteplase. In a pooled analysis, tenecteplase 0.25mg/kg had the greatest odds to achieve early neurological improvement (OR [95%CI] 3.3 [1.5, 7.2], p=0.093), excellent functional outcome (mRS 0-1) at three months (OR [95%CI] 1.9 [0.8, 4.4], p= 0.28), with reduced odds of ICH (OR [95%CI] 0.6 [0.2, 1.8], P=0.43) compared with alteplase. Only 19 patients were treated with tenecteplase 0.4mg/kg, which showed increased odds of SICH compared with alteplase (OR [95% CI] 6.2 [0.7, 56.3]). In the two studies where advanced imaging was performed, the imaging outcomes did not differ in the IPD analysis. Conclusion: Tenecteplase 0.25 mg/kg has the potential to be a better alternative to alteplase. It can be given as a single bolus, does not cause disruption to systemic coagulation, and is possibly safer and more effective in clot lysis. Further phase III study to compare tenecteplase and alteplase in acute ischaemic stroke is warranted.
Resumo:
Cardiovascular diseases (CVD) is a leading cause of death in the world. Despite effective treatment regimens for ischaemic heart disease (IHD) and ischaemic stroke, mortality and recurrence rates remain high. Antiplatelet therapy is on effective treatment and reduces the risk of recurrent heart attack and stroke. Nevertheless, there are patients who stopped or interrupted their antiplatelet therapy for certain reasons or some patients may be resistant or poor responders to antiplatelet therapy. Furthermore, there is evidence of rebound effect in platelet activity after antiplatelet cessation and this may associate with increased risk of cardiovascular event. This thesis is divided into five main chapters (chapters 3 to 7) which attempt to provide data to help resolve the uncertainty. Chapter 1 highlights the background of cardiovascular diseases and the global burden of cardiovascular and cerebrovascular diseases. The metabolism of platelets, antiplatelet therapy and current antiplatelet therapy guidelines are described, followed by discussion of the risk of cardiovascular event and changes in antiplatelet therapy. Chapter 2 describes the data source from Virtual International Stroke Trial Archive (VISTA) and National Health Service Greater Glasgow and Clyde (NHSGGC) Safe Haven, followed by definition of outcome measures. In chapter 3, Virtual International Stroke Trial Archive (VISTA) data was examined to test whether continue with the same antiplatelet therapy or changing to a new antiplatelet regimen reduces the risk of subsequent events in patients who experience a stroke whilst taking antiplatelet therapy. The findings indicate that subjects who switch to a new antiplatelet regimen after stroke did not have a lower early recurrence rate than subjects who continued with the same antiplatelet therapy. Observations on bleeding complications were similar in both groups. However, changing antiplatelet regimen after stroke was associated with more favourable functional outcome across a full scale modified Rankin Scale (mRS) at 90 days. In chapter 4, association between early or later initiation of antiplatelet with a recurrent ischaemic stroke and bleeding complications was assessed using VISTA data. The findings indicate that there was no association between a recurrent ischaemic stroke and timing of initiation of antiplatelet drug after stroke. However, early initiation was associated with increased risk of bleeding. In terms of functional outcomes, this study demonstrated that the mid-time and late initiation of antiplatelet therapy after acute stroke are associated with better functional outcomes compared with early initiation. In chapter 5, a nested case-control study was performed to explore the rate of antiplatelet cessation and interruption in a sample of patients with recent ischaemic stroke and to assess the risk of cardiovascular events associated with cessation and interruption of antiplatelet. It was found that there was no increased risk of cardiovascular event among patients who had early cessation or interrupted/stopped antiplatelet therapy within 90 days following acute ischaemic stroke. In chapter 6, the incidence and predictors of cardiovascular events after DAPT cessation were evaluated. The incidence of cardiovascular event while taking DAPT and following discontinuation of DAPT was 15.7% and 16.7% respectively. This study found that increasing age was associated with an increased risk of cardiovascular event, whereas, revascularization-treated patients and longer duration of DAPT, were each associated with a decreased risk. The duration of DAPT six months and less was associated a significantly higher risk for cardiovascular event. In chapter 7, an untargeted metabolomics analysis was performed while on DAPT (aspirin plus ticagrelor) and once they stopped ticagrelor to identify metabolite changes associated with cardiovascular events after stopping DAPT. Ten ACS patients were recruited in this study and data were analysed for seven patients. Three hundred eleven putative metabolites were identified. This study found 16 putative metabolites significantly altered following ticagrelor cessation. Of these, seven metabolites were from lipid pathway and down-regulated some up to 3-fold. On the other hand, adenosine, from nucleotide metabolism was upregulated up to 2.6-fold. It concluded that there are changes in numerous pathways following DAPT discontinuation and whether these changes differ in patients who have cardiovascular event after stopping DAPT warrant further investigation. In chapter 8, a summary of the findings of this thesis are presented as well as the future directions of research in this area.
Resumo:
During pregnancy, the maternal cardiovascular system undergoes major adaptation. One of these changes is a 40-50 % increase in circulating blood volume which requires a systemic remodelling of the vasculature in order to regulate maternal blood pressure and maximise blood supply to the developing placenta and fetus. These changes are broadly conserved between humans and rats making them an appropriate pre-clinical model in which to study the underlying mechanisms of pregnancy-dependent cardiovascular remodelling. Whilst women are normally protected against cardiovascular disease; pregnancy marks a period of time where women are susceptible to cardiovascular complications. Cardiovascular disease is the leading cause of maternal mortality in the United Kingdom; in particular hypertensive conditions are among the most common complications of pregnancy. One of the main underlying pathologies of these pregnancy complications is thought to be a failure of the maternal cardiovascular system to adapt. The remodelling of the uterine arteries, which directly supply the maternal-fetal interface, is paramount to a healthy pregnancy. Failure of the uterine arteries to remodel sufficiently can result in a number of obstetric complications such as preeclampsia, fetal growth restriction and spontaneous pregnancy loss. At present, it is poorly understood whether this deficient vascular response is due to a predisposition from existing maternal cardiovascular risk factors, the physiological changes that occur during pregnancy or a combination of both. Previous work in our group employed the stroke prone spontaneously hypertensive rat (SHRSP) as a model to investigate pregnancy-dependent remodelling of the uterine arteries. The SHRSP develops hypertension from 6 weeks of age and can be contrasted with the control strain, the Wistar Kyoto (WKY) rat. The phenotype of the SHRSP is therefore reflective of the clinical situation of maternal chronic hypertension during pregnancy. We showed that the SHRSP exhibited a deficient uterine artery remodelling response with respect to both structure and function accompanied by a reduction in litter size relative to the WKY at gestational day (GD) 18. A previous intervention study using nifedipine in the SHRSP achieved successful blood pressure reduction from 6 weeks of age and throughout pregnancy; however uterine artery remodelling and litter size at GD18 was not improved. We concluded that the abnormal uterine artery remodelling present in the SHRSP was independent of chronic hypertension. From these findings, we hypothesised that the SHRSP could be a novel model of spontaneously deficient uterine artery remodelling in response to pregnancy which was underpinned by other as yet unidentified cardiovascular risk factors. In Chapter 1 of this thesis, I have characterised the maternal, placental and fetal phenotype in pregnant (GD18) SHRSP and WKY. The pregnant SHRSP exhibit features of left ventricular hypertrophy in response to pregnancy and altered expression of maternal plasma biomarkers which have been previously associated with hypertension in human pregnancy. I developed a protocol for accurate dissection of the rat uteroplacental unit using qPCR probes specific for each layer. This allowed me to make an accurate and specific statement about gene expression in the SHRSP GD18 placenta; where oxidative stress related gene markers were increased in the vascular compartments. The majority of SHRSP placenta presented at GD18 with a blackened ring which encircled the tissue. Further investigation of the placenta using western blot for caspase 3 cleavage determined that this was likely due to increased cell death in the SHRSP placenta. The SHRSP also presented with a loss of one particular placental cell type at GD18: the glycogen cells. These cells could have been the target of cell death in the SHRSP placenta or were utilised early in pregnancy as a source of energy due to the deficient uterine artery blood supply. Blastocyst implantation was not altered but resorption rate was increased between SHRSP and WKY; indicating that the reduction in litter size in the SHRSP was primarily due to late (>GD14) pregnancy loss. Fetal growth was not restricted in SHRSP which led to the conclusion that SHRSP sacrifice part of their litter to deliver a smaller number of healthier pups. Activation of the immune system is a common pathway that has been implicated in the development of both hypertension and adverse pregnancy outcome. In Chapter 2, I proposed that this may be a mechanism of interest in SHRSP pregnancy and measured the pro-inflammatory cytokine, TNFα, as a marker of inflammation in pregnant SHRSP and WKY and in the placentas from these animals. TNFα was up-regulated in maternal plasma and urine from the GD18 SHRSP. In addition, TNFα release was increased from the GD18 SHRSP placenta as was the expression of the pro-inflammatory TNFα receptor 1 (Tnfr1). In order to investigate whether this excess TNFα was detrimental to SHRSP pregnancy, a vehicle-controlled intervention study using etanercept (a monoclonal antibody which works as a TNFα antagonist) was carried out. Etanercept treatment at GD0, 6, 12 and 18 resulted in an improvement in pregnancy outcome in the SHRSP with an increased litter size and reduced resorption rate. Furthermore, there was an improved uterine artery function in GD18 SHRSP treated with etanercept which was associated with an improved uterine artery blood flow over the course of gestation. In Chapter 3, I sought to identify the source of this detrimental excess of TNFα by designing a panel for maternal leukocytes in the blood and placenta at GD18. A population of CD3- CD161+ cells, which are defined as rat natural killer (NK) cells, were increased in number in the SHRSP. Intracellular flow cytometry also identified this cell type as a source of excess TNFα in blood and placenta from pregnant SHRSP. I then went on to evaluate the effects of etanercept treatment on these CD3- CD161+ cells and showed that etanercept reduced the expression of CD161 and the cytotoxic molecule, granzyme B, in the NK cells. Thus, etanercept limits the cytotoxicity and potential damaging effect of these NK cells in the SHRSP placenta. Analysing the urinary peptidome has clinical potential to identify novel pathways involved with disease and/or to develop biomarker panels to aid and stratify diagnosis. In Chapter 4, I utilised the SHRSP as a pre-clinical model to identify novel urinary peptides associated with hypertensive pregnancy. Firstly, a characterisation study was carried out in the kidney of the WKY and SHRSP. Urine samples from WKY and SHRSP taken at pre-pregnancy, mid-pregnancy (GD12) and late pregnancy (GD18) were used in the peptidomic screen. In order to capture peptides which were markers of hypertensive pregnancy from the urinary peptidomic data, I focussed on those that were only changed in a strain dependent manner at GD12 and 18 and not pre-pregnancy. Peptide fragments from the uromodulin protein were identified from this analysis to be increased in pregnant SHRSP relative to pregnant WKY. This increase in uromodulin was validated at the SHRSP kidney level using qPCR. Uromodulin has previously been identified to be a candidate molecule involved in systemic arterial hypertension but not in hypertensive pregnancy thus is a promising target for further study. In summary, we have characterised the SHRSP as the first model of maternal chronic hypertension during pregnancy and identified that inflammation mediated by TNFα and NK cells plays a key role in the pathology. The evidence presented in this thesis establishes the SHRSP as a pre-clinical model for pregnancy research and can be continued into clinical studies in pregnant women with chronic hypertension which remains an area of unmet research need.