2 resultados para C51 - Model Construction and Estimation
em Glasgow Theses Service
Resumo:
This research explores the business model (BM) evolution process of entrepreneurial companies and investigates the relationship between BM evolution and firm performance. Recently, it has been increasingly recognised that the innovative design (and re-design) of BMs is crucial to the performance of entrepreneurial firms, as BM can be associated with superior value creation and competitive advantage. However, there has been limited theoretical and empirical evidence in relation to the micro-mechanisms behind the BM evolution process and the entrepreneurial outcomes of BM evolution. This research seeks to fill this gap by opening up the ‘black box’ of the BM evolution process, exploring the micro-patterns that facilitate the continuous shaping, changing, and renewing of BMs and examining how BM evolutions create and capture value in a dynamic manner. Drawing together the BM and strategic entrepreneurship literature, this research seeks to understand: (1) how and why companies introduce BM innovations and imitations; (2) how BM innovations and imitations interplay as patterns in the BM evolution process; and (3) how BM evolution patterns affect firm performances. This research adopts a longitudinal multiple case study design that focuses on the emerging phenomenon of BM evolution. Twelve entrepreneurial firms in the Chinese Online Group Buying (OGB) industry were selected for their continuous and intensive developments of BMs and their varying success rates in this highly competitive market. Two rounds of data collection were carried out between 2013 and 2014, which generates 31 interviews with founders/co-founders and in total 5,034 pages of data. Following a three-stage research framework, the data analysis begins by mapping the BM evolution process of the twelve companies and classifying the changes in the BMs into innovations and imitations. The second stage focuses down to the BM level, which addresses the BM evolution as a dynamic process by exploring how BM innovations and imitations unfold and interplay over time. The final stage focuses on the firm level, providing theoretical explanations as to the effects of BM evolution patterns on firm performance. This research provides new insights into the nature of BM evolution by elaborating on the missing link between BM dynamics and firm performance. The findings identify four patterns of BM evolution that have different effects on a firm’s short- and long-term performance. This research contributes to the BM literature by presenting what the BM evolution process actually looks like. Moreover, it takes a step towards the process theory of the interplay between BM innovations and imitations, which addresses the role of companies’ actions, and more importantly, reactions to the competitors. Insights are also given into how entrepreneurial companies achieve and sustain value creation and capture by successfully combining the BM evolution patterns. Finally, the findings on BM evolution contributes to the strategic entrepreneurship literature by increasing the understanding of how companies compete in a more dynamic and complex environment. It reveals that, the achievement of superior firm performance is more than a simple question of whether to innovate or imitate, but rather an integration of innovation and imitation strategies over time. This study concludes with a discussion of the findings and their implications for theory and practice.
Resumo:
Background: Body composition is affected by diseases, and affects responses to medical treatments, dosage of medicines, etc., while an abnormal body composition contributes to the causation of many chronic diseases. While we have reliable biochemical tests for certain nutritional parameters of body composition, such as iron or iodine status, and we have harnessed nuclear physics to estimate the body’s content of trace elements, the very basic quantification of body fat content and muscle mass remains highly problematic. Both body fat and muscle mass are vitally important, as they have opposing influences on chronic disease, but they have seldom been estimated as part of population health surveillance. Instead, most national surveys have merely reported BMI and waist, or sometimes the waist/hip ratio; these indices are convenient but do not have any specific biological meaning. Anthropometry offers a practical and inexpensive method for muscle and fat estimation in clinical and epidemiological settings; however, its use is imperfect due to many limitations, such as a shortage of reference data, misuse of terminology, unclear assumptions, and the absence of properly validated anthropometric equations. To date, anthropometric methods are not sensitive enough to detect muscle and fat loss. Aims: The aim of this thesis is to estimate Adipose/fat and muscle mass in health disease and during weight loss through; 1. evaluating and critiquing the literature, to identify the best-published prediction equations for adipose/fat and muscle mass estimation; 2. to derive and validate adipose tissue and muscle mass prediction equations; and 3.to evaluate the prediction equations along with anthropometric indices and the best equations retrieved from the literature in health, metabolic illness and during weight loss. Methods: a Systematic review using Cochrane Review method was used for reviewing muscle mass estimation papers that used MRI as the reference method. Fat mass estimation papers were critically reviewed. Mixed ethnic, age and body mass data that underwent whole body magnetic resonance imaging to quantify adipose tissue and muscle mass (dependent variable) and anthropometry (independent variable) were used in the derivation/validation analysis. Multiple regression and Bland-Altman plot were applied to evaluate the prediction equations. To determine how well the equations identify metabolic illness, English and Scottish health surveys were studied. Statistical analysis using multiple regression and binary logistic regression were applied to assess model fit and associations. Also, populations were divided into quintiles and relative risk was analysed. Finally, the prediction equations were evaluated by applying them to a pilot study of 10 subjects who underwent whole-body MRI, anthropometric measurements and muscle strength before and after weight loss to determine how well the equations identify adipose/fat mass and muscle mass change. Results: The estimation of fat mass has serious problems. Despite advances in technology and science, prediction equations for the estimation of fat mass depend on limited historical reference data and remain dependent upon assumptions that have not yet been properly validated for different population groups. Muscle mass does not have the same conceptual problems; however, its measurement is still problematic and reference data are scarce. The derivation and validation analysis in this thesis was satisfactory, compared to prediction equations in the literature they were similar or even better. Applying the prediction equations in metabolic illness and during weight loss presented an understanding on how well the equations identify metabolic illness showing significant associations with diabetes, hypertension, HbA1c and blood pressure. And moderate to high correlations with MRI-measured adipose tissue and muscle mass before and after weight loss. Conclusion: Adipose tissue mass and to an extent muscle mass can now be estimated for many purposes as population or groups means. However, these equations must not be used for assessing fatness and categorising individuals. Further exploration in different populations and health surveys would be valuable.