6 resultados para Brown Band Disease, Maldives, prevalence, host range, coral diseases
em Glasgow Theses Service
Resumo:
The investigation of pathogen persistence in vector-borne diseases is important in different ecological and epidemiological contexts. In this thesis, I have developed deterministic and stochastic models to help investigating the pathogen persistence in host-vector systems by using efficient modelling paradigms. A general introduction with aims and objectives of the studies conducted in the thesis are provided in Chapter 1. The mathematical treatment of models used in the thesis is provided in Chapter 2 where the models are found locally asymptotically stable. The models used in the rest of the thesis are based on either the same or similar mathematical structure studied in this chapter. After that, there are three different experiments that are conducted in this thesis to study the pathogen persistence. In Chapter 3, I characterize pathogen persistence in terms of the Critical Community Size (CCS) and find its relationship with the model parameters. In this study, the stochastic versions of two epidemiologically different host-vector models are used for estimating CCS. I note that the model parameters and their algebraic combination, in addition to the seroprevalence level of the host population, can be used to quantify CCS. The study undertaken in Chapter 4 is used to estimate pathogen persistence using both deterministic and stochastic versions of a model with seasonal birth rate of the vectors. Through stochastic simulations we investigate the pattern of epidemics after the introduction of an infectious individual at different times of the year. The results show that the disease dynamics are altered by the seasonal variation. The higher levels of pre-existing seroprevalence reduces the probability of invasion of dengue. In Chapter 5, I considered two alternate ways to represent the dynamics of a host-vector model. Both of the approximate models are investigated for the parameter regions where the approximation fails to hold. Moreover, three metrics are used to compare them with the Full model. In addition to the computational benefits, these approximations are used to investigate to what degree the inclusion of the vector population in the dynamics of the system is important. Finally, in Chapter 6, I present the summary of studies undertaken and possible extensions for the future work.
Resumo:
The clinical syndrome of heart failure is one of the leading causes of hospitalisation and mortality in older adults. Due to ageing of the general population and improved survival from cardiac disease the prevalence of heart failure is rising. Despite the fact that the majority of patients with heart failure are aged over 65 years old, many with multiple co-morbidities, the association between cognitive impairment and heart failure has received relatively little research interest compared to other aspects of cardiac disease. The presence of concomitant cognitive impairment has implications for the management of patients with heart failure in the community. There are many evidence based pharmacological therapies used in heart failure management which obviously rely on patient education regarding compliance. Also central to the treatment of heart failure is patient self-monitoring for signs indicative of clinical deterioration which may prompt them to seek medical assistance or initiate a therapeutic intervention e.g. taking additional diuretic. Adherence and self-management may be jeopardised by cognitive impairment. Formal diagnosis of cognitive impairment requires evidence of abnormalities on neuropsychological testing (typically a result ≥1.5 standard deviation below the age-standardised mean) in at least one cognitive domain. Cognitive impairment is associated with an increased risk of dementia and people with mild cognitive impairment develop dementia at a rate of 10-15% per year, compared with a rate of 1-2% per year in healthy controls.1 Cognitive impairment has been reported in a variety of cardiovascular disorders. It is well documented among patients with hypertension, atrial fibrillation and coronary artery disease, especially after coronary artery bypass grafting. This background is relevant to the study of patients with heart failure as many, if not most, have a history of one or more of these co-morbidities. A systematic review of the literature to date has shown a wide variation in the reported prevalence of cognitive impairment in heart failure. This range in variation probably reflects small study sample sizes, differences in the heart failure populations studied (inpatients versus outpatients), neuropsychological tests employed and threshold values used to define cognitive impairment. The main aim of this study was to identify the prevalence of cognitive impairment in a representative sample of heart failure patients and to examine whether this association was due to heart failure per se rather than the common cardiovascular co-morbidities that often accompany it such as atherosclerosis and atrial fibrillation. Of the 817 potential participants screened, 344 were included in this study. The study cohort included 196 patients with HF, 61 patients with ischaemic heart disease and no HF and 87 healthy control participants. The HF cohort consisted of 70 patients with HF and coronary artery disease in sinus rhythm, 51 patients with no coronary artery disease in sinus rhythm and 75 patients with HF and atrial fibrillation. All patients with HF had evidence of HF-REF with a LVEF <45% on transthoracic echocardiography. The majority of the cohort was male and elderly. HF patients with AF were more likely to have multiple co-morbidities. Patients recruited from cardiac rehabilitation clinics had proven coronary artery disease, no clinical HF and a LVEF >55%. The ischaemic heart disease group were relatively well matched to healthy controls who had no previous diagnosis of any chronic illness, prescribed no regular medication and also had a LVEF >55%. All participants underwent the same baseline investigations and there were no obvious differences in baseline demographics between each of the cohorts. All 344 participants attended for 2 study visits. Baseline investigations including physiological measurements, electrocardiography, echocardiography and laboratory testing were all completed at the initial screening visit. Participants were then invited to attend their second study visit within 10 days of the screening visit. 342 participants completed all neuropsychological assessments (2 participants failed to complete 1 questionnaire). A full comprehensive battery of neuropsychological assessment tools were administered in the 90 minute study visit. These included three global cognitive screening assessment tools (mini mental state examination, Montreal cognitive assessment tool and the repeatable battery for the assessment of neuropsychological status) and additional measures of executive function (an area we believe has been understudied to date). In total there were 9 cognitive tests performed. These were generally well tolerated. Data were also collected using quality of life questionnaires and health status measures. In addition to this, carers of the study participant were asked to complete a measure of caregiver strain and an informant questionnaire on cognitive decline. The prevalence of cognitive impairment varied significantly depending on the neuropsychological assessment tool used and cut-off value used to define cognitive impairment. Despite this, all assessment tools showed the same pattern of results with those patients with heart failure and atrial fibrillation having poorer cognitive performance than those with heart failure in sinus rhythm. Cognitive impairment was also more common in patients with cardiac disease (either coronary artery disease or heart failure) than age-, sex- and education-matched healthy controls, even after adjustment for common vascular risk factors.
Resumo:
Vector-borne disease emergence in recent decades has been associated with different environmental drivers including changes in habitat, hosts and climate. Lyme borreliosis is among the most important vector-borne diseases in the Northern hemisphere and is an emerging disease in Scotland. Transmitted by Ixodid tick vectors between large numbers of wild vertebrate host species, Lyme borreliosis is caused by bacteria from the Borrelia burgdorferi sensu lato species group. Ecological studies can inform how environmental factors such as host abundance and community composition, habitat and landscape heterogeneity contribute to spatial and temporal variation in risk from B. burgdorferi s.l. In this thesis a range of approaches were used to investigate the effects of vertebrate host communities and individual host species as drivers of B. burgdorferi s.l. dynamics and its tick vector Ixodes ricinus. Host species differ in reservoir competence for B. burgdorferi s.l. and as hosts for ticks. Deer are incompetent transmission hosts for B. burgdorferi s.l. but are significant hosts of all life-stages of I. ricinus. Rodents and birds are important transmission hosts of B. burgdorferi s.l. and common hosts of immature life-stages of I. ricinus. In this thesis, surveys of woodland sites revealed variable effects of deer density on B. burgdorferi prevalence, from no effect (Chapter 2) to a possible ‘dilution’ effect resulting in lower prevalence at higher deer densities (Chapter 3). An invasive species in Scotland, the grey squirrel (Sciurus carolinensis), was found to host diverse genotypes of B. burgdorferi s.l. and may act as a spill-over host for strains maintained by native host species (Chapter 4). Habitat fragmentation may alter the dynamics of B. burgdorferi s.l. via effects on the host community and host movements. In this thesis, there was lack of persistence of the rodent associated genospecies of B. burgdorferi s.l. within a naturally fragmented landscape (Chapter 3). Rodent host biology, particularly population cycles and dispersal ability are likely to affect pathogen persistence and recolonization in fragmented habitats. Heterogeneity in disease dynamics can occur spatially and temporally due to differences in the host community, habitat and climatic factors. Higher numbers of I. ricinus nymphs, and a higher probability of detecting a nymph infected with B. burgdorferi s.l., were found in areas with warmer climates estimated by growing degree days (Chapter 2). The ground vegetation type associated with the highest number of I. ricinus nymphs varied between studies in this thesis (Chapter 2 & 3) and does not appear to be a reliable predictor across large areas. B. burgdorferi s.l. prevalence and genospecies composition was highly variable for the same sites sampled in subsequent years (Chapter 2). This suggests that dynamic variables such as reservoir host densities and deer should be measured as well as more static habitat and climatic factors to understand the drivers of B. burgdorferi s.l. infection in ticks. Heterogeneity in parasite loads amongst hosts is a common finding which has implications for disease ecology and management. Using a 17-year data set for tick infestations in a wild bird community in Scotland, different effects of age and sex on tick burdens were found among four species of passerine bird (Chapter 5). There were also different rates of decline in tick burdens among bird species in response to a long term decrease in questing tick pressure over the study. Species specific patterns may be driven by differences in behaviour and immunity and highlight the importance of comparative approaches. Combining whole genome sequencing (WGS) and population genetics approaches offers a novel approach to identify ecological drivers of pathogen populations. An initial analysis of WGS from B. burgdorferi s.s. isolates sampled 16 years apart suggests that there is a signal of measurable evolution (Chapter 6). This suggests demographic analyses may be applied to understand ecological and evolutionary processes of these bacteria. This work shows how host communities, habitat and climatic factors can affect the local transmission dynamics of B. burgdorferi s.l. and the potential risk of infection to humans. Spatial and temporal heterogeneity in pathogen dynamics poses challenges for the prediction of risk. New tools such as WGS of the pathogen (Chapter 6) and blood meal analysis techniques will add power to future studies on the ecology and evolution of B. burgdorferi s.l.
Resumo:
Trypanosomiasis has been identified as a neglected tropical disease in both humans and animals in many regions of sub-Saharan Africa. Whilst assessments of the biology of trypanosomes, vectors, vertebrate hosts and the environment have provided useful information about life cycles, transmission, and pathogenesis of the parasites that could be used for treatment and control, less information is available about the effects of interactions among multiple intrinsic factors on trypanosome presence in tsetse flies from different sites. It is known that multiple species of tsetse flies can transmit trypanosomes but differences in their vector competence has normally been studied in relation to individual factors in isolation, such as: intrinsic factors of the flies (e.g. age, sex); habitat characteristics; presence of endosymbionts (e.g. Wigglesworthia glossinidia, Sodalis glossinidius); feeding pattern; host communities that the flies feed on; and which species of trypanosomes are transmitted. The purpose of this study was to take a more integrated approach to investigate trypanosome prevalence in tsetse flies. In chapter 2, techniques were optimised for using the Polymerase Chain Reaction (PCR) to identify species of trypanosomes (Trypanosoma vivax, T. congolense, T. brucei, T. simiae, and T. godfreyi) present in four species of tsetse flies (Glossina austeni, G. brevipalpis, G. longipennis and G. pallidipes) from two regions of eastern Kenya (the Shimba Hills and Nguruman). Based on universal primers targeting the internal transcribed spacer 1 region (ITS-1), T. vivax was the predominant pathogenic species detected in flies, both singly and in combination with other species of trypanosomes. Using Generalised Linear Models (GLMs) and likelihood ratio tests to choose the best-fitting models, presence of T. vivax was significantly associated with an interaction between subpopulation (a combination between collection sites and species of Glossina) and sex of the flies (X2 = 7.52, df = 21, P-value = 0.0061); prevalence in females overall was higher than in males but this was not consistent across subpopulations. Similarly, T. congolense was significantly associated only with subpopulation (X2 = 18.77, df = 1, P-value = 0.0046); prevalence was higher overall in the Shimba Hills than in Nguruman but this pattern varied by species of tsetse fly. When associations were analysed in individual species of tsetse flies, there were no consistent associations between trypanosome prevalence and any single factor (site, sex, age) and different combinations of interactions were found to be significant for each. The results thus demonstrated complex interactions between vectors and trypanosome prevalence related to both the distribution and intrinsic factors of tsetse flies. The potential influence of the presence of S. glossinidius on trypanosome presence in tsetse flies was studied in chapter 3. A high number of Sodalis positive flies was found in the Shimba Hills, while there were only two positive flies from Nguruman. Presence or absence of Sodalis was significantly associated with subpopulation while trypanosome presence showed a significant association with age (X2 = 4.65, df = 14, P-value = 0.0310) and an interaction between subpopulation and sex (X2 = 18.94, df = 10, P-value = 0.0043). However, the specific associations that were significant varied across species of trypanosomes, with T. congolense and T. brucei but not T. vivax showing significant interactions involving Sodalis. Although it has previously been concluded that presence of Sodalis increases susceptibility to trypanosomes, the results presented here suggest a more complicated relationship, which may be biased by differences in the distribution and intrinsic factors of tsetse flies, as well as which trypanosome species are considered. In chapter 4 trypanosome status was studied in relation to blood meal sources, feeding status and feeding patterns of G. pallidipes (which was the predominant fly species collected for this study) as determined by sequencing the mitochondrial cytochrome B gene using DNA extracted from abdomen samples. African buffalo and African elephants were the main sources of blood meals but antelopes, warthogs, humans, giraffes and hyenas were also identified. Feeding on multiple hosts was common in flies sampled from the Shimba Hills but most flies from Nguruman had fed on single host species. Based on Multiple Correspondence Analysis (MCA), host-feeding patterns showed a correlation with site of sample collection and Sodalis status, while trypanosome status was correlated with sex and age of the flies, suggesting that recent host-feeding patterns from blood meal analysis cannot predict trypanosome status. In conclusion, the complexity of interactions found suggests that strategies of tsetse fly control should be specific to particular epidemic areas. Future studies should include laboratory experiments that use local colonies of tsetse flies, local strains of trypanosomes and local S. glossinidius under controlled environmental conditions to tease out the factors that affect vector competence and the relative influence of external environmental factors on the dynamics of these interactions.
Resumo:
Foot-and-mouth disease (FMD), a disease of cloven hooved animals caused by FMD virus (FMDV), is one of the most economically devastating diseases of livestock worldwide. The global burden of disease is borne largely by livestock-keepers in areas of Africa and Asia where the disease is endemic and where many people rely on livestock for their livelihoods and food-security. Yet, there are many gaps in our knowledge of the drivers of FMDV circulation in these settings. In East Africa, FMD epidemiology is complicated by the circulation of multiple FMDV serotypes (distinct antigenic variants) and by the presence of large populations of susceptible wildlife and domestic livestock. The African buffalo (Syncerus caffer) is the only wildlife species with consistent evidence of high levels of FMDV infection, and East Africa contains the largest population of this species globally. To inform FMD control in this region, key questions relate to heterogeneities in FMD prevalence and impacts in different livestock management systems and to the role of wildlife as a potential source of FMDV for livestock. To develop FMD control strategies and make best use of vaccine control options, serotype-specific patterns of circulation need to be characterised. In this study, the impacts and epidemiology of FMD were investigated across a range of traditional livestock-keeping systems in northern Tanzania, including pastoralist, agro-pastoralist and rural smallholder systems. Data were generated through field studies and laboratory analyses between 2010 and 2015. The study involved analysis of existing household survey data and generated serological data from cross-sectional livestock and buffalo samples and longitudinal cattle samples. Serological analyses included non-structural protein ELISAs, serotype-specific solid-phase competitive ELISAs, with optimisation to detect East African FMDV variants, and virus neutralisation testing. Risk factors for FMDV infection and outbreaks were investigated through analysis of cross-sectional serological data in conjunction with a case-control outbreak analysis. A novel Bayesian modeling approach was developed to infer serotype-specific infection history from serological data, and combined with virus isolation data from FMD outbreaks to characterise temporal and spatial patterns of serotype-specific infection. A high seroprevalence of FMD was detected in both northern Tanzanian livestock (69%, [66.5 - 71.4%] in cattle and 48.5%, [45.7-51.3%] in small ruminants) and in buffalo (80.9%, [74.7-86.1%]). Four different serotypes of FMDV (A, O, SAT1 and SAT2) were isolated from livestock. Up to three outbreaks per year were reported by households and active surveillance highlighted up to four serial outbreaks in the same herds within three years. Agro-pastoral and pastoral livestock keepers reported more frequent FMD outbreaks compared to smallholders. Households in all three management systems reported that FMD outbreaks caused significant impacts on milk production and sales, and on animals’ draught power, hence on crop production, with implications for food security and livelihoods. Risk factor analyses showed that older livestock were more likely to be seropositive for FMD (Odds Ratio [OR] 1.4 [1.4-1.5] per extra year) and that cattle (OR 3.3 [2.7-4.0]) were more likely than sheep and goats to be seropositive. Livestock managed by agro-pastoralists (OR 8.1 [2.8-23.6]) or pastoralists (OR 7.1 [2.9-17.6]) were more likely to be seropositive compared to those managed by smallholders. Larger herds (OR: 1.02 [1.01-1.03] per extra bovine) and those that recently acquired new livestock (OR: 5.57 [1.01 – 30.91]) had increased odds of suffering an FMD outbreak. Measures of potential contact with buffalo or with other FMD susceptible wildlife did not increase the likelihood of FMD in livestock in either the cross-sectional serological analysis or case-control outbreak analysis. The Bayesian model was validated to correctly infer from ELISA data the most recent serotype to infect cattle. Consistent with the lack of risk factors related to wildlife contact, temporal and spatial patterns of exposure to specific FMDV serotypes were not tightly linked in cattle and buffalo. In cattle, four serial waves of different FMDV serotypes that swept through southern Kenyan and northern Tanzanian livestock populations over a four-year period dominated infection patterns. In contrast, only two serotypes (SAT1 and SAT2) dominated in buffalo populations. Key conclusions are that FMD has a substantial impact in traditional livestock systems in East Africa. Wildlife does not currently appear to act as an important source of FMDV for East African livestock, and control efforts in the region should initially focus on livestock management and vaccination strategies. A novel modeling approach greatly facilitated the interpretation of serological data and may be a potent epidemiological tool in the African setting. There was a clear temporal pattern of FMDV antigenic dominance across northern Tanzania and southern Kenya. Longer-term research to investigate whether serotype-specific FMDV sweeps are truly predictable, and to shed light on FMD post-infection immunity in animals exposed to serial FMD infections is warranted.
Resumo:
Advances in healthcare over the last 100 years has resulted in an ever increasing elderly population. This presents greater challenges for adequate systemic and oral healthcare delivery. With increasing age there is a natural decline in oral health, leading to the loss of teeth and ultimately for some having to wear denture prosthesis. It is currently estimated that approximately one fifth of the UK and US populations have some form of removable prosthesis. The microbiology of denture induced mucosal inflammation is a pivotal factor to consider in denture care management, similar to many other oral diseases of microbial influence, such as caries, gingivitis and periodontitis. Dentures support the growth of microbial biofilms, structures commonly known as denture plaque. Microbiologically, denture stomatitis (DS) is a disease primarily considered to be of yeast aetiology, with the literature disproportionately focussed on Candida spp. However, the denture surface is capable of carrying up to 1011 microbes per milligram, the majority of which are bacteria. Thus it is apparent that denture plaque is more diverse than we assume. There is a fundamental gap in our understanding of the bacterial composition of denture plaque and the role that they may play in denture related disease such as DS. This is categorised as inflammation of the oral mucosa, a disease affecting around half of all denture wearers. It has been proposed that bacteria and fungi interact on the denture surface and that these polymicrobial interactions lead to synergism and increased DS pathogenesis. Therefore, understanding the denture microbiome composition is the key step to beginning to understand disease pathogenesis, and ultimately help improve treatments and identify novel targets for therapeutic and preventative strategies. A group of 131 patients were included within this study in which they provided samples from their dentures, palatal mucosa, saliva and dental plaque. Microbes residing on the denture surface were quantified using standard Miles and Misra culture technique which investigated the presence of Candida, aerobes and anaerobes. These clinical samples also underwent next generation sequencing using the Miseq Illumina platform to give a more global representation of the microbes present at each of these sites in the oral cavity of these denture wearers. This data was then used to compare the composition and diversity of denture, mucosal and dental plaque between one another, as well as between healthy and diseased individuals. Additional comparisons included denture type and the presence or absence of natural teeth. Furthermore, microbiome data was used to assess differences between patients with varying levels of oral hygiene. The host response to the denture microbiome was investigated by screening the patients saliva for the presence and quantification of a range of antimicrobial peptides that are associated with the oral cavity. Based on the microbiome data an in vitro biofilm model was developed that reflected the composition of denture plaque. These biofilms were then used to assess quantitative and compositional changes over time and in response to denture cleansing treatments. Finally, the systemic implications of denture plaque were assessed by screening denture plaque samples for the presence of nine well known respiratory pathogens using quantitative PCR. The results from this study have shown that the bacterial microbiome composition of denture wearers is not consistent throughout the mouth and varies depending on sample site. Moreover, the presence of natural dentition has a significant impact on the microbiome composition. As for healthy and diseased patients the data suggests that compositional changes responsible for disease progression are occurring at the mucosa, and that dentures may in fact be a reservoir for these microbes. In terms of denture hygiene practices, sleeping with a denture in situ was found to be a common occurrence. Furthermore, significant shifts in denture microbiome composition were found in these individuals when compared to the denture microbiome of those that removed their denture at night. As for the host response, some antimicrobial peptides were found to be significantly reduced in the absence of natural dentition, indicating that the oral immune response is gradually impaired with the loss of teeth. This study also identified potentially serious systemic implications in terms of respiratory infection, as 64.6% of patients carried respiratory pathogens on their denture. In conclusion, this is the first study to provide a detailed understanding of the oral microbiome of denture wearers, and has provided evidence that DS development is more complex than simply a candidal infection. Both fungal and bacterial kingdoms clearly play a role in defining the progression of DS. The biofilm model created in this study demonstrated its potential as a platform to test novel actives. Future use of this model will aid in greater understanding of host: biofilm interactions. Such findings are applicable to oral health and beyond, and may help to identify novel therapeutic targets for the treatment of DS and other biofilm associated diseases.