3 resultados para Breath Analyzers.

em Glasgow Theses Service


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coronary heart disease is a major cause of morbidity and mortality worldwide. Percutaneous coronary intervention (PCI) has become the most widely used method of coronary artery revascularisation. The use of stents to hold open atherosclerosis induced arterial narrowing has significantly reduced elastic recoil and acute vessel occlusion following balloon angioplasty. However, bare metal stents have been associated with in-stent restenosis attributed to vascular smooth muscle cell (VSMC) hyperplasia and excessive neointimal formation. The resultant luminal renarrowing may manifest clinically with the return of symptoms such as chest pain or shortness of breath. The development of drug eluting stents has significantly reduced the incidence of in-stent restenosis (ISR). Unfortunately the antiproliferative medications used not only inhibit VSMC proliferation but also re-endothelialisation of the stented vessel. In addition, the drug impregnated polymer coating has been associated with a chronic inflammatory response within the vessel wall predisposing patients to stent thrombosis. Thus the identification of novel therapies which promote vessel healing without excessive proliferative or inflammatory response may improve long term outcome and reduce the need for repeated revascularisation. MicroRNAs (miRs) are short (18-25 nucleotide) non-coding RNAs acting to regulate gene expression. By binding to the 3’untranslated region of mRNA they act to fine tune gene expression either by mRNA degradation or translational repression. Originally identified in coordinating tissue development microRNAs have also been shown to play important roles coordinating the inflammatory response and in numerous cardiovascular diseases. MiR-21 has been identified in human atherosclerotic plaques, arteriosclerosis obliterans and abdominal aortic aneurysms. In addition, its up regulation has been documented in preclinical models of vascular injury. This study sought to identify the role of miR-21 in the development of ISR. Utilising a small animal model of stenting and in vitro techniques, we sought to investigate its influence upon VSMC and immune cell response following stenting. 19 The refinement of a murine stenting model within the Baker laboratory and the electrochemical dissolution of the metal stent from within harvested vascular tissues significantly improved the ability to perform detailed histological analysis. In addition, identification of miRNAs using in situ hybridisation was achieved for the first time within stented tissue. Neointimal formation and ISR was significantly reduced in mice in which miR-21 had been genetically deleted. In addition, neointimal composition was found to be altered in miR-21 KO mice with reductions in VSMC and elastin content demonstrated. Importantly, no difference in re-endothelialisation was observed. In vitro analysis demonstrated that VSMCs from miR-21 KO mice had both reduced proliferative and migratory capacity following platelet derived growth factor stimulation. Molecular analysis revealed that these differences may, at least in part, be due to de-repression of programmed cell death 4 (PDCD4). PDCD4 is a known miR-21 target within VSMCs implicated in the suppression of proliferation and promotion of apoptosis. Unfortunately, initial attempts at antimiR mediated knockdown of miR-21 in vivo, failed to produce a similar change in the suppression of ISR. Furthermore, a significant alteration in macrophage polarisation state within the neointima of miR-21 WT and KO mice was noted. Immunohistochemical staining revealed a preponderance of anti-inflammatory M2 macrophages in KO mice. Analysis of bone marrow derived macrophages from miR-21 KO mice demonstrated an increased level of the peroxisome proliferation activating receptor-γ (PPARγ) which facilitates M2 polarisation. Importantly, significant alterations in numerous pro-inflammatory cytokines, which also have mitogenic effects, were also found following genetic deletion of miR-21. In Summary, this is the first study to look at miRs in the development of ISR. MiR-21 plays an important role in the development of ISR by influencing the proliferative response of VSMCs and modulating the immune response following stent deployment. Further attempts to modulate miR-21 expression following PCI may reduce ISR and the need for repeat revascularisation while also reducing the risk of stent thrombosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Physical activity in children with intellectual disabilities is a neglected area of study, which is most apparent in relation to physical activity measurement research. Although objective measures, specifically accelerometers, are widely used in research involving children with intellectual disabilities, existing research is based on measurement methods and data interpretation techniques generalised from typically developing children. However, due to physiological and biomechanical differences between these populations, questions have been raised in the existing literature on the validity of generalising data interpretation techniques from typically developing children to children with intellectual disabilities. Therefore, there is a need to conduct population-specific measurement research for children with intellectual disabilities and develop valid methods to interpret accelerometer data, which will increase our understanding of physical activity in this population. Methods Study 1: A systematic review was initially conducted to increase the knowledge base on how accelerometers were used within existing physical activity research involving children with intellectual disabilities and to identify important areas for future research. A systematic search strategy was used to identify relevant articles which used accelerometry-based monitors to quantify activity levels in ambulatory children with intellectual disabilities. Based on best practice guidelines, a novel form was developed to extract data based on 17 research components of accelerometer use. Accelerometer use in relation to best practice guidelines was calculated using percentage scores on a study-by-study and component-by-component basis. Study 2: To investigate the effect of data interpretation methods on the estimation of physical activity intensity in children with intellectual disabilities, a secondary data analysis was conducted. Nine existing sets of child-specific ActiGraph intensity cut points were applied to accelerometer data collected from 10 children with intellectual disabilities during an activity session. Four one-way repeated measures ANOVAs were used to examine differences in estimated time spent in sedentary, moderate, vigorous, and moderate to vigorous intensity activity. Post-hoc pairwise comparisons with Bonferroni adjustments were additionally used to identify where significant differences occurred. Study 3: The feasibility on a laboratory-based calibration protocol developed for typically developing children was investigated in children with intellectual disabilities. Specifically, the feasibility of activities, measurements, and recruitment was investigated. Five children with intellectual disabilities and five typically developing children participated in 14 treadmill-based and free-living activities. In addition, resting energy expenditure was measured and a treadmill-based graded exercise test was used to assess cardiorespiratory fitness. Breath-by-breath respiratory gas exchange and accelerometry were continually measured during all activities. Feasibility was assessed using observations, activity completion rates, and respiratory data. Study 4: Thirty-six children with intellectual disabilities participated in a semi-structured school-based physical activity session to calibrate accelerometry for the estimation of physical activity intensity. Participants wore a hip-mounted ActiGraph wGT3X+ accelerometer, with direct observation (SOFIT) used as the criterion measure. Receiver operating characteristic curve analyses were conducted to determine the optimal accelerometer cut points for sedentary, moderate, and vigorous intensity physical activity. Study 5: To cross-validate the calibrated cut points and compare classification accuracy with existing cut points developed in typically developing children, a sub-sample of 14 children with intellectual disabilities who participated in the school-based sessions, as described in Study 4, were included in this study. To examine the validity, classification agreement was investigated between the criterion measure of SOFIT and each set of cut points using sensitivity, specificity, total agreement, and Cohen’s kappa scores. Results Study 1: Ten full text articles were included in this review. The percentage of review criteria met ranged from 12%−47%. Various methods of accelerometer use were reported, with most use decisions not based on population-specific research. A lack of measurement research, specifically the calibration/validation of accelerometers for children with intellectual disabilities, is limiting the ability of researchers to make appropriate and valid accelerometer use decisions. Study 2: The choice of cut points had significant and clinically meaningful effects on the estimation of physical activity intensity and sedentary behaviour. For the 71-minute session, estimations for time spent in each intensity between cut points ranged from: sedentary = 9.50 (± 4.97) to 31.90 (± 6.77) minutes; moderate = 8.10 (± 4.07) to 40.40 (± 5.74) minutes; vigorous = 0.00 (± .00) to 17.40 (± 6.54) minutes; and moderate to vigorous = 8.80 (± 4.64) to 46.50 (± 6.02) minutes. Study 3: All typically developing participants and one participant with intellectual disabilities completed the protocol. No participant met the maximal criteria for the graded exercise test or attained a steady state during the resting measurements. Limitations were identified with the usability of respiratory gas exchange equipment and the validity of measurements. The school-based recruitment strategy was not effective, with a participation rate of 6%. Therefore, a laboratory-based calibration protocol was not feasible for children with intellectual disabilities. Study 4: The optimal vertical axis cut points (cpm) were ≤ 507 (sedentary), 1008−2300 (moderate), and ≥ 2301 (vigorous). Sensitivity scores ranged from 81−88%, specificity 81−85%, and AUC .87−.94. The optimal vector magnitude cut points (cpm) were ≤ 1863 (sedentary), ≥ 2610 (moderate) and ≥ 4215 (vigorous). Sensitivity scores ranged from 80−86%, specificity 77−82%, and AUC .86−.92. Therefore, the vertical axis cut points provide a higher level of accuracy in comparison to the vector magnitude cut points. Study 5: Substantial to excellent classification agreement was found for the calibrated cut points. The calibrated sedentary cut point (ĸ =.66) provided comparable classification agreement with existing cut points (ĸ =.55−.67). However, the existing moderate and vigorous cut points demonstrated low sensitivity (0.33−33.33% and 1.33−53.00%, respectively) and disproportionately high specificity (75.44−.98.12% and 94.61−100.00%, respectively), indicating that cut points developed in typically developing children are too high to accurately classify physical activity intensity in children with intellectual disabilities. Conclusions The studies reported in this thesis are the first to calibrate and validate accelerometry for the estimation of physical activity intensity in children with intellectual disabilities. In comparison with typically developing children, children with intellectual disabilities require lower cut points for the classification of moderate and vigorous intensity activity. Therefore, generalising existing cut points to children with intellectual disabilities will underestimate physical activity and introduce systematic measurement error, which could be a contributing factor to the low levels of physical activity reported for children with intellectual disabilities in previous research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exhaled breath (EB) and exhaled breath condensate (EBC) contain numerous volatile gases and a wide-array of non-volatile compounds, several of which have been investigated as markers of lower airway inflammation in human and veterinary medicine and have been used to diagnose and monitor diseases associated with pulmonary inflammation. The identification of reliable biomarkers within EB and EBC is an active research focus with the common goal of establishing non-invasive and repeatable assessment of respiratory health and disease in mammals. The application of EB and EBC analysis holds considerable appeal in the investigation of respiratory disease in Thoroughbred racehorses, as inflammatory airway disease (IAD) is a common cause for poor performance in this population of animals. This study documented that EB and EBC samples can be safely collected from Thoroughbred racehorses in their own environment, without adverse effect or interference with the horse’s training regimen. The use of off-line collection and analysis of exhaled gases via chemiluminescence is suitable for the measurement of exhaled carbon monoxide, but is not appropriate for analyzing exhaled nitric oxide in horses. Significant changes in the concentration of exhaled CO and the pH of EBC occurred in response to strenuous exercise and when exercising in different environmental temperatures. Exhaled CO was associated with tracheal mucus score (and the number of neutrophils in the mucus) and EBC pH was significantly different in horses with evidence of neutrophilic IAD compared to horses without IAD. Numerous physiological and environmental variables were identified as confounding factors in the assessment of both exhaled CO and EBC pH, with respiratory rate prior to EB collection, and during EBC collection, consistently identified as an explanatory variable influencing the concentration of exhaled biomarkers. Further studies in EB and EBC analysis in horses need to focus on objectively accounting for key respiratory dynamics during sample collection.