2 resultados para Borrowing

em Glasgow Theses Service


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis studies the field of asset price bubbles. It is comprised of three independent chapters. Each of these chapters either directly or indirectly analyse the existence or implications of asset price bubbles. The type of bubbles assumed in each of these chapters is consistent with rational expectations. Thus, the kind of price bubbles investigated here are known as rational bubbles in the literature. The following describes the three chapters. Chapter 1: This chapter attempts to explain the recent US housing price bubble by developing a heterogeneous agent endowment economy asset pricing model with risky housing, endogenous collateral and defaults. Investment in housing is subject to an idiosyncratic risk and some mortgages are defaulted in equilibrium. We analytically derive the leverage or the endogenous loan to value ratio. This variable comes from a limited participation constraint in a one period mortgage contract with monitoring costs. Our results show that low values of housing investment risk produces a credit easing effect encouraging excess leverage and generates credit driven rational price bubbles in the housing good. Conversely, high values of housing investment risk produces a credit crunch characterized by tight borrowing constraints, low leverage and low house prices. Furthermore, the leverage ratio was found to be procyclical and the rate of defaults countercyclical consistent with empirical evidence. Chapter 2: It is widely believed that financial assets have considerable persistence and are susceptible to bubbles. However, identification of this persistence and potential bubbles is not straightforward. This chapter tests for price bubbles in the United States housing market accounting for long memory and structural breaks. The intuition is that the presence of long memory negates price bubbles while the presence of breaks could artificially induce bubble behaviour. Hence, we use procedures namely semi-parametric Whittle and parametric ARFIMA procedures that are consistent for a variety of residual biases to estimate the value of the long memory parameter, d, of the log rent-price ratio. We find that the semi-parametric estimation procedures robust to non-normality and heteroskedasticity errors found far more bubble regions than parametric ones. A structural break was identified in the mean and trend of all the series which when accounted for removed bubble behaviour in a number of regions. Importantly, the United States housing market showed evidence for rational bubbles at both the aggregate and regional levels. In the third and final chapter, we attempt to answer the following question: To what extend should individuals participate in the stock market and hold risky assets over their lifecycle? We answer this question by employing a lifecycle consumption-portfolio choice model with housing, labour income and time varying predictable returns where the agents are constrained in the level of their borrowing. We first analytically characterize and then numerically solve for the optimal asset allocation on the risky asset comparing the return predictability case with that of IID returns. We successfully resolve the puzzles and find equity holding and participation rates close to the data. We also find that return predictability substantially alter both the level of risky portfolio allocation and the rate of stock market participation. High factor (dividend-price ratio) realization and high persistence of factor process indicative of stock market bubbles raise the amount of wealth invested in risky assets and the level of stock market participation, respectively. Conversely, rare disasters were found to bring down these rates, the change being severe for investors in the later years of the life-cycle. Furthermore, investors following time varying returns (return predictability) hedged background risks significantly better than the IID ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.