3 resultados para Biology, Genetics|Biology, Microbiology

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vector-borne disease emergence in recent decades has been associated with different environmental drivers including changes in habitat, hosts and climate. Lyme borreliosis is among the most important vector-borne diseases in the Northern hemisphere and is an emerging disease in Scotland. Transmitted by Ixodid tick vectors between large numbers of wild vertebrate host species, Lyme borreliosis is caused by bacteria from the Borrelia burgdorferi sensu lato species group. Ecological studies can inform how environmental factors such as host abundance and community composition, habitat and landscape heterogeneity contribute to spatial and temporal variation in risk from B. burgdorferi s.l. In this thesis a range of approaches were used to investigate the effects of vertebrate host communities and individual host species as drivers of B. burgdorferi s.l. dynamics and its tick vector Ixodes ricinus. Host species differ in reservoir competence for B. burgdorferi s.l. and as hosts for ticks. Deer are incompetent transmission hosts for B. burgdorferi s.l. but are significant hosts of all life-stages of I. ricinus. Rodents and birds are important transmission hosts of B. burgdorferi s.l. and common hosts of immature life-stages of I. ricinus. In this thesis, surveys of woodland sites revealed variable effects of deer density on B. burgdorferi prevalence, from no effect (Chapter 2) to a possible ‘dilution’ effect resulting in lower prevalence at higher deer densities (Chapter 3). An invasive species in Scotland, the grey squirrel (Sciurus carolinensis), was found to host diverse genotypes of B. burgdorferi s.l. and may act as a spill-over host for strains maintained by native host species (Chapter 4). Habitat fragmentation may alter the dynamics of B. burgdorferi s.l. via effects on the host community and host movements. In this thesis, there was lack of persistence of the rodent associated genospecies of B. burgdorferi s.l. within a naturally fragmented landscape (Chapter 3). Rodent host biology, particularly population cycles and dispersal ability are likely to affect pathogen persistence and recolonization in fragmented habitats. Heterogeneity in disease dynamics can occur spatially and temporally due to differences in the host community, habitat and climatic factors. Higher numbers of I. ricinus nymphs, and a higher probability of detecting a nymph infected with B. burgdorferi s.l., were found in areas with warmer climates estimated by growing degree days (Chapter 2). The ground vegetation type associated with the highest number of I. ricinus nymphs varied between studies in this thesis (Chapter 2 & 3) and does not appear to be a reliable predictor across large areas. B. burgdorferi s.l. prevalence and genospecies composition was highly variable for the same sites sampled in subsequent years (Chapter 2). This suggests that dynamic variables such as reservoir host densities and deer should be measured as well as more static habitat and climatic factors to understand the drivers of B. burgdorferi s.l. infection in ticks. Heterogeneity in parasite loads amongst hosts is a common finding which has implications for disease ecology and management. Using a 17-year data set for tick infestations in a wild bird community in Scotland, different effects of age and sex on tick burdens were found among four species of passerine bird (Chapter 5). There were also different rates of decline in tick burdens among bird species in response to a long term decrease in questing tick pressure over the study. Species specific patterns may be driven by differences in behaviour and immunity and highlight the importance of comparative approaches. Combining whole genome sequencing (WGS) and population genetics approaches offers a novel approach to identify ecological drivers of pathogen populations. An initial analysis of WGS from B. burgdorferi s.s. isolates sampled 16 years apart suggests that there is a signal of measurable evolution (Chapter 6). This suggests demographic analyses may be applied to understand ecological and evolutionary processes of these bacteria. This work shows how host communities, habitat and climatic factors can affect the local transmission dynamics of B. burgdorferi s.l. and the potential risk of infection to humans. Spatial and temporal heterogeneity in pathogen dynamics poses challenges for the prediction of risk. New tools such as WGS of the pathogen (Chapter 6) and blood meal analysis techniques will add power to future studies on the ecology and evolution of B. burgdorferi s.l.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

No abstract available.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Campylobacter is a major cause of acute bacterial gastroenteritis worldwide, with the highest number of infections being attributed to Campylobacter jejuni. C. jejuni is a Gram negative, spiral, motile bacterium that belongs to the campylobacterales order and is related to both Helicobacter spp. and Wolinella sp.. It has long been established that proton pump inhibitors (PPIs) and other benzimidazole derivatives display anti-Helicobacter activity in vitro. PPIs have in the past been shown to affect Helicobacter pylori growth, survival, motility, morphology, adhesion/invasion potential and susceptibility to conventional antibiotics. PPIs are highly effective drugs that are well tolerated, safe for prolonged daily use and are therefore in high demand. Both the PPIs omeprazole and lansoprazole featured in the top ten drugs prescribed in England in 2014. In 2014 Campylobacter was also the most commonly diagnosed gastrointestinal infection in Scotland, in England and Wales and also in Europe. It has previously been generally accepted that patients who are being treated with PPIs are more susceptible to enteric infections such as Campylobacter than people not taking PPIs. The effect of PPI exposure on H. pylori has been investigated rigorously in the past. A single previous study has hinted that PPIs may also be capable of affecting the related organism C. jejuni,but investigations have been extremely limited in comparison to those investigating the effect of PPIs on H. pylori. This study has investigated the in vitro effects of direct contact with PPIs on the biology ofC. jejuni. Exposure to the PPI pantoprazole was found to affect C. jejuni growth/survival, motility, morphology, biofilm formation, invasion potential and susceptibility to some conventional antibiotics. Microarray studies showed that the cmeA and Cj0561c genes were significantly up-regulated in response to pantoprazole exposure and a CmeABC deficient mutant was found to be significantly more susceptible to killing by pantoprazole than was the parent strain. Proteomic analysis indicated that the oxidative stress response of C. jejuni was induced following exposure to sub-lethal concentrations of pantoprazole. C. jejuni gene expression was assessed using qRT-PCR and the genes encoding for thiol peroxidase and GroEL co-chaperonin (both involved in the C. jejuni oxidative stress response) were found to be around four times higher in response to exposure to sub-lethal concentrations of pantoprazole. Experiments using the oxidative stress inhibitors thiourea (a hydroxyl radical quencher) and bipyridyl (a ferrous iron chelator) showed that killing by pantoprazole was not mediated by hydroxyl radical production.