5 resultados para Bayesian shared component model

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD thesis contains three main chapters on macro finance, with a focus on the term structure of interest rates and the applications of state-of-the-art Bayesian econometrics. Except for Chapter 1 and Chapter 5, which set out the general introduction and conclusion, each of the chapters can be considered as a standalone piece of work. In Chapter 2, we model and predict the term structure of US interest rates in a data rich environment. We allow the model dimension and parameters to change over time, accounting for model uncertainty and sudden structural changes. The proposed timevarying parameter Nelson-Siegel Dynamic Model Averaging (DMA) predicts yields better than standard benchmarks. DMA performs better since it incorporates more macro-finance information during recessions. The proposed method allows us to estimate plausible realtime term premia, whose countercyclicality weakened during the financial crisis. Chapter 3 investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in the bond yields of seven advanced economies is due to global co-movement. Our results suggest that global inflation is the most important factor among global macro fundamentals. Non-fundamental factors are essential in driving global co-movements, and are closely related to sentiment and economic uncertainty. Lastly, we analyze asymmetric spillovers in global bond markets connected to diverging monetary policies. Chapter 4 proposes a no-arbitrage framework of term structure modeling with learning and model uncertainty. The representative agent considers parameter instability, as well as the uncertainty in learning speed and model restrictions. The empirical evidence shows that apart from observational variance, parameter instability is the dominant source of predictive variance when compared with uncertainty in learning speed or model restrictions. When accounting for ambiguity aversion, the out-of-sample predictability of excess returns implied by the learning model can be translated into significant and consistent economic gains over the Expectations Hypothesis benchmark.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD thesis contains three main chapters on macro finance, with a focus on the term structure of interest rates and the applications of state-of-the-art Bayesian econometrics. Except for Chapter 1 and Chapter 5, which set out the general introduction and conclusion, each of the chapters can be considered as a standalone piece of work. In Chapter 2, we model and predict the term structure of US interest rates in a data rich environment. We allow the model dimension and parameters to change over time, accounting for model uncertainty and sudden structural changes. The proposed time-varying parameter Nelson-Siegel Dynamic Model Averaging (DMA) predicts yields better than standard benchmarks. DMA performs better since it incorporates more macro-finance information during recessions. The proposed method allows us to estimate plausible real-time term premia, whose countercyclicality weakened during the financial crisis. Chapter 3 investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in the bond yields of seven advanced economies is due to global co-movement. Our results suggest that global inflation is the most important factor among global macro fundamentals. Non-fundamental factors are essential in driving global co-movements, and are closely related to sentiment and economic uncertainty. Lastly, we analyze asymmetric spillovers in global bond markets connected to diverging monetary policies. Chapter 4 proposes a no-arbitrage framework of term structure modeling with learning and model uncertainty. The representative agent considers parameter instability, as well as the uncertainty in learning speed and model restrictions. The empirical evidence shows that apart from observational variance, parameter instability is the dominant source of predictive variance when compared with uncertainty in learning speed or model restrictions. When accounting for ambiguity aversion, the out-of-sample predictability of excess returns implied by the learning model can be translated into significant and consistent economic gains over the Expectations Hypothesis benchmark.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension is a major risk factor for cardiovascular disease and mortality, and a growing global public health concern, with up to one-third of the world’s population affected. Despite the vast amount of evidence for the benefits of blood pressure (BP) lowering accumulated to date, elevated BP is still the leading risk factor for disease and disability worldwide. It is well established that hypertension and BP are common complex traits, where multiple genetic and environmental factors contribute to BP variation. Furthermore, family and twin studies confirmed the genetic component of BP, with a heritability estimate in the range of 30-50%. Contemporary genomic tools enabling the genotyping of millions of genetic variants across the human genome in an efficient, reliable, and cost-effective manner, has transformed hypertension genetics research. This is accompanied by the presence of international consortia that have offered unprecedentedly large sample sizes for genome-wide association studies (GWASs). While GWAS for hypertension and BP have identified more than 60 loci, variants in these loci are associated with modest effects on BP and in aggregate can explain less than 3% of the variance in BP. The aims of this thesis are to study the genetic and environmental factors that influence BP and hypertension traits in the Scottish population, by performing several genetic epidemiological analyses. In the first part of this thesis, it aims to study the burden of hypertension in the Scottish population, along with assessing the familial aggregation and heritialbity of BP and hypertension traits. In the second part, it aims to validate the association of common SNPs reported in the large GWAS and to estimate the variance explained by these variants. In this thesis, comprehensive genetic epidemiology analyses were performed on Generation Scotland: Scottish Family Health Study (GS:SFHS), one of the largest population-based family design studies. The availability of clinical, biological samples, self-reported information, and medical records for study participants has allowed several assessments to be performed to evaluate factors that influence BP variation in the Scottish population. Of the 20,753 subjects genotyped in the study, a total of 18,470 individuals (grouped into 7,025 extended families) passed the stringent quality control (QC) criteria and were available for all subsequent analysis. Based on the BP-lowering treatment exposure sources, subjects were further classified into two groups. First, subjects with both a self-reported medications (SRMs) history and electronic-prescription records (EPRs; n =12,347); second, all the subjects with at least one medication history source (n =18,470). In the first group, the analysis showed a good concordance between SRMs and EPRs (kappa =71%), indicating that SRMs can be used as a surrogate to assess the exposure to BP-lowering medication in GS:SFHS participants. Although both sources suffer from some limitations, SRMs can be considered the best available source to estimate the drug exposure history in those without EPRs. The prevalence of hypertension was 40.8% with higher prevalence in men (46.3%) compared to women (35.8%). The prevalence of awareness, treatment and controlled hypertension as defined by the study definition were 25.3%, 31.2%, and 54.3%, respectively. These findings are lower than similar reported studies in other populations, with the exception of controlled hypertension prevalence, which can be considered better than other populations. Odds of hypertension were higher in men, obese or overweight individuals, people with a parental history of hypertension, and those living in the most deprived area of Scotland. On the other hand, deprivation was associated with higher odds of treatment, awareness and controlled hypertension, suggesting that people living in the most deprived area may have been receiving better quality of care, or have higher comorbidity levels requiring greater engagement with doctors. These findings highlight the need for further work to improve hypertension management in Scotland. The family design of GS:SFHS has allowed family-based analysis to be performed to assess the familial aggregation and heritability of BP and hypertension traits. The familial correlation of BP traits ranged from 0.07 to 0.20, and from 0.18 to 0.34 for parent-offspring pairs and sibling pairs, respectively. A higher correlation of BP traits was observed among first-degree relatives than other types of relative pairs. A variance-component model that was adjusted for sex, body mass index (BMI), age, and age-squared was used to estimate heritability of BP traits, which ranged from 24% to 32% with pulse pressure (PP) having the lowest estimates. The genetic correlation between BP traits showed a high correlation between systolic (SBP), diastolic (DBP) and mean arterial pressure (MAP) (G: 81% to 94%), but lower correlations with PP (G: 22% to 78%). The sibling recurrence risk ratio (λS) for hypertension and treatment were calculated as 1.60 and 2.04 respectively. These findings confirm the genetic components of BP traits in GS:SFHS, and justify further work to investigate genetic determinants of BP. Genetic variants reported in the recent large GWAS of BP traits were selected for genotyping in GS:SFHS using a custom designed TaqMan® OpenArray®. The genotyping plate included 44 single nucleotide polymorphisms (SNPs) that have been previously reported to be associated with BP or hypertension at genome-wide significance level. A linear mixed model that is adjusted for age, age-squared, sex, and BMI was used to test for the association between the genetic variants and BP traits. Of the 43 variants that passed the QC, 11 variants showed statistically significant association with at least one BP trait. The phenotypic variance explained by these variant for the four BP traits were 1.4%, 1.5%, 1.6%, and 0.8% for SBP, DBP, MAP, and PP, respectively. The association of genetic risk score (GRS) that were constructed from selected variants has showed a positive association with BP level and hypertension prevalence, with an average effect of one mmHg increase with each 0.80 unit increases in the GRS across the different BP traits. The impact of BP-lowering medication on the genetic association study for BP traits has been established, with typical practice of adding a fixed value (i.e. 15/10 mmHg) to the measured BP values to adjust for BP treatment. Using the subset of participants with the two treatment exposure sources (i.e. SRMs and EPRs), the influence of using either source to justify the addition of fixed values in SNP association signal was analysed. BP phenotypes derived from EPRs were considered the true phenotypes, and those derived from SRMs were considered less accurate, with some phenotypic noise. Comparing SNPs association signals between the four BP traits in the two model derived from the different adjustments showed that MAP was the least impacted by the phenotypic noise. This was suggested by identifying the same overlapped significant SNPs for the two models in the case of MAP, while other BP traits had some discrepancy between the two sources

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current approach to data analysis for the Laser Interferometry Space Antenna (LISA) depends on the time delay interferometry observables (TDI) which have to be generated before any weak signal detection can be performed. These are linear combinations of the raw data with appropriate time shifts that lead to the cancellation of the laser frequency noises. This is possible because of the multiple occurrences of the same noises in the different raw data. Originally, these observables were manually generated starting with LISA as a simple stationary array and then adjusted to incorporate the antenna's motions. However, none of the observables survived the flexing of the arms in that they did not lead to cancellation with the same structure. The principal component approach is another way of handling these noises that was presented by Romano and Woan which simplified the data analysis by removing the need to create them before the analysis. This method also depends on the multiple occurrences of the same noises but, instead of using them for cancellation, it takes advantage of the correlations that they produce between the different readings. These correlations can be expressed in a noise (data) covariance matrix which occurs in the Bayesian likelihood function when the noises are assumed be Gaussian. Romano and Woan showed that performing an eigendecomposition of this matrix produced two distinct sets of eigenvalues that can be distinguished by the absence of laser frequency noise from one set. The transformation of the raw data using the corresponding eigenvectors also produced data that was free from the laser frequency noises. This result led to the idea that the principal components may actually be time delay interferometry observables since they produced the same outcome, that is, data that are free from laser frequency noise. The aims here were (i) to investigate the connection between the principal components and these observables, (ii) to prove that the data analysis using them is equivalent to that using the traditional observables and (ii) to determine how this method adapts to real LISA especially the flexing of the antenna. For testing the connection between the principal components and the TDI observables a 10x 10 covariance matrix containing integer values was used in order to obtain an algebraic solution for the eigendecomposition. The matrix was generated using fixed unequal arm lengths and stationary noises with equal variances for each noise type. Results confirm that all four Sagnac observables can be generated from the eigenvectors of the principal components. The observables obtained from this method however, are tied to the length of the data and are not general expressions like the traditional observables, for example, the Sagnac observables for two different time stamps were generated from different sets of eigenvectors. It was also possible to generate the frequency domain optimal AET observables from the principal components obtained from the power spectral density matrix. These results indicate that this method is another way of producing the observables therefore analysis using principal components should give the same results as that using the traditional observables. This was proven by fact that the same relative likelihoods (within 0.3%) were obtained from the Bayesian estimates of the signal amplitude of a simple sinusoidal gravitational wave using the principal components and the optimal AET observables. This method fails if the eigenvalues that are free from laser frequency noises are not generated. These are obtained from the covariance matrix and the properties of LISA that are required for its computation are the phase-locking, arm lengths and noise variances. Preliminary results of the effects of these properties on the principal components indicate that only the absence of phase-locking prevented their production. The flexing of the antenna results in time varying arm lengths which will appear in the covariance matrix and, from our toy model investigations, this did not prevent the occurrence of the principal components. The difficulty with flexing, and also non-stationary noises, is that the Toeplitz structure of the matrix will be destroyed which will affect any computation methods that take advantage of this structure. In terms of separating the two sets of data for the analysis, this was not necessary because the laser frequency noises are very large compared to the photodetector noises which resulted in a significant reduction in the data containing them after the matrix inversion. In the frequency domain the power spectral density matrices were block diagonals which simplified the computation of the eigenvalues by allowing them to be done separately for each block. The results in general showed a lack of principal components in the absence of phase-locking except for the zero bin. The major difference with the power spectral density matrix is that the time varying arm lengths and non-stationarity do not show up because of the summation in the Fourier transform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding how virus strains offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, including Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where multiple serotypes often co-circulate, in vitro testing of large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Vaccines will offer cross-protection against closely related strains, but not against those that are antigenically distinct. To be able to predict cross-protection we must understand the antigenic variability within a virus serotype, distinct lineages of a virus, and identify the antigenic residues and evolutionary changes that cause the variability. In this thesis we present a family of sparse hierarchical Bayesian models for detecting relevant antigenic sites in virus evolution (SABRE), as well as an extended version of the method, the extended SABRE (eSABRE) method, which better takes into account the data collection process. The SABRE methods are a family of sparse Bayesian hierarchical models that use spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. In this thesis we demonstrate how the SABRE methods can be used to identify antigenic residues within different serotypes and show how the SABRE method outperforms established methods, mixed-effects models based on forward variable selection or l1 regularisation, on both synthetic and viral datasets. In addition we also test a number of different versions of the SABRE method, compare conjugate and semi-conjugate prior specifications and an alternative to the spike and slab prior; the binary mask model. We also propose novel proposal mechanisms for the Markov chain Monte Carlo (MCMC) simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler. The SABRE method is then applied to datasets from FMDV and the Influenza virus in order to identify a number of known antigenic residue and to provide hypotheses of other potentially antigenic residues. We also demonstrate how the SABRE methods can be used to create accurate predictions of the important evolutionary changes of the FMDV serotypes. In this thesis we provide an extended version of the SABRE method, the eSABRE method, based on a latent variable model. The eSABRE method takes further into account the structure of the datasets for FMDV and the Influenza virus through the latent variable model and gives an improvement in the modelling of the error. We show how the eSABRE method outperforms the SABRE methods in simulation studies and propose a new information criterion for selecting the random effects factors that should be included in the eSABRE method; block integrated Widely Applicable Information Criterion (biWAIC). We demonstrate how biWAIC performs equally to two other methods for selecting the random effects factors and combine it with the eSABRE method to apply it to two large Influenza datasets. Inference in these large datasets is computationally infeasible with the SABRE methods, but as a result of the improved structure of the likelihood, we are able to show how the eSABRE method offers a computational improvement, leading it to be used on these datasets. The results of the eSABRE method show that we can use the method in a fully automatic manner to identify a large number of antigenic residues on a variety of the antigenic sites of two Influenza serotypes, as well as making predictions of a number of nearby sites that may also be antigenic and are worthy of further experiment investigation.