3 resultados para Bayesian risk prediction models

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Depression is a major health problem worldwide and the majority of patients presenting with depressive symptoms are managed in primary care. Current approaches for assessing depressive symptoms in primary care are not accurate in predicting future clinical outcomes, which may potentially lead to over or under treatment. The Allostatic Load (AL) theory suggests that by measuring multi-system biomarker levels as a proxy of measuring multi-system physiological dysregulation, it is possible to identify individuals at risk of having adverse health outcomes at a prodromal stage. Allostatic Index (AI) score, calculated by applying statistical formulations to different multi-system biomarkers, have been associated with depressive symptoms. Aims and Objectives: To test the hypothesis, that a combination of allostatic load (AL) biomarkers will form a predictive algorithm in defining clinically meaningful outcomes in a population of patients presenting with depressive symptoms. The key objectives were: 1. To explore the relationship between various allostatic load biomarkers and prevalence of depressive symptoms in patients, especially in patients diagnosed with three common cardiometabolic diseases (Coronary Heart Disease (CHD), Diabetes and Stroke). 2 To explore whether allostatic load biomarkers predict clinical outcomes in patients with depressive symptoms, especially in patients with three common cardiometabolic diseases (CHD, Diabetes and Stroke). 3 To develop a predictive tool to identify individuals with depressive symptoms at highest risk of adverse clinical outcomes. Methods: Datasets used: ‘DepChron’ was a dataset of 35,537 patients with existing cardiometabolic disease collected as a part of routine clinical practice. ‘Psobid’ was a research data source containing health related information from 666 participants recruited from the general population. The clinical outcomes for 3 both datasets were studied using electronic data linkage to hospital and mortality health records, undertaken by Information Services Division, Scotland. Cross-sectional associations between allostatic load biomarkers calculated at baseline, with clinical severity of depression assessed by a symptom score, were assessed using logistic and linear regression models in both datasets. Cox’s proportional hazards survival analysis models were used to assess the relationship of allostatic load biomarkers at baseline and the risk of adverse physical health outcomes at follow-up, in patients with depressive symptoms. The possibility of interaction between depressive symptoms and allostatic load biomarkers in risk prediction of adverse clinical outcomes was studied using the analysis of variance (ANOVA) test. Finally, the value of constructing a risk scoring scale using patient demographics and allostatic load biomarkers for predicting adverse outcomes in depressed patients was investigated using clinical risk prediction modelling and Area Under Curve (AUC) statistics. Key Results: Literature Review Findings. The literature review showed that twelve blood based peripheral biomarkers were statistically significant in predicting six different clinical outcomes in participants with depressive symptoms. Outcomes related to both mental health (depressive symptoms) and physical health were statistically associated with pre-treatment levels of peripheral biomarkers; however only two studies investigated outcomes related to physical health. Cross-sectional Analysis Findings: In DepChron, dysregulation of individual allostatic biomarkers (mainly cardiometabolic) were found to have a non-linear association with increased probability of co-morbid depressive symptoms (as assessed by Hospital Anxiety and Depression Score HADS-D≥8). A composite AI score constructed using five biomarkers did not lead to any improvement in the observed strength of the association. In Psobid, BMI was found to have a significant cross-sectional association with the probability of depressive symptoms (assessed by General Health Questionnaire GHQ-28≥5). BMI, triglycerides, highly sensitive C - reactive 4 protein (CRP) and High Density Lipoprotein-HDL cholesterol were found to have a significant cross-sectional relationship with the continuous measure of GHQ-28. A composite AI score constructed using 12 biomarkers did not show a significant association with depressive symptoms among Psobid participants. Longitudinal Analysis Findings: In DepChron, three clinical outcomes were studied over four years: all-cause death, all-cause hospital admissions and composite major adverse cardiovascular outcome-MACE (cardiovascular death or admission due to MI/stroke/HF). Presence of depressive symptoms and composite AI score calculated using mainly peripheral cardiometabolic biomarkers was found to have a significant association with all three clinical outcomes over the following four years in DepChron patients. There was no evidence of an interaction between AI score and presence of depressive symptoms in risk prediction of any of the three clinical outcomes. There was a statistically significant interaction noted between SBP and depressive symptoms in risk prediction of major adverse cardiovascular outcome, and also between HbA1c and depressive symptoms in risk prediction of all-cause mortality for patients with diabetes. In Psobid, depressive symptoms (assessed by GHQ-28≥5) did not have a statistically significant association with any of the four outcomes under study at seven years: all cause death, all cause hospital admission, MACE and incidence of new cancer. A composite AI score at baseline had a significant association with the risk of MACE at seven years, after adjusting for confounders. A continuous measure of IL-6 observed at baseline had a significant association with the risk of three clinical outcomes- all-cause mortality, all-cause hospital admissions and major adverse cardiovascular event. Raised total cholesterol at baseline was associated with lower risk of all-cause death at seven years while raised waist hip ratio- WHR at baseline was associated with higher risk of MACE at seven years among Psobid participants. There was no significant interaction between depressive symptoms and peripheral biomarkers (individual or combined) in risk prediction of any of the four clinical outcomes under consideration. Risk Scoring System Development: In the DepChron cohort, a scoring system was constructed based on eight baseline demographic and clinical variables to predict the risk of MACE over four years. The AUC value for the risk scoring system was modest at 56.7% (95% CI 55.6 to 57.5%). In Psobid, it was not possible to perform this analysis due to the low event rate observed for the clinical outcomes. Conclusion: Individual peripheral biomarkers were found to have a cross-sectional association with depressive symptoms both in patients with cardiometabolic disease and middle-aged participants recruited from the general population. AI score calculated with different statistical formulations was of no greater benefit in predicting concurrent depressive symptoms or clinical outcomes at follow-up, over and above its individual constituent biomarkers, in either patient cohort. SBP had a significant interaction with depressive symptoms in predicting cardiovascular events in patients with cardiometabolic disease; HbA1c had a significant interaction with depressive symptoms in predicting all-cause mortality in patients with diabetes. Peripheral biomarkers may have a role in predicting clinical outcomes in patients with depressive symptoms, especially for those with existing cardiometabolic disease, and this merits further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The social landscape is filled with an intricate web of species-specific desired objects and course of actions. Humans are highly social animals and, as they navigate this landscape, they need to produce adapted decision-making behaviour. Traditionally social and non-social neural mechanisms affecting choice have been investigated using different approaches. Recently, in an effort to unite these findings, two main theories have been proposed to explain how the brain might encode social and non-social motivational decision-making: the extended common currency and the social valuation specific schema (Ruff & Fehr 2014). One way to test these theories is to directly compare neural activity related to social and non-social decision outcomes within the same experimental setting. Here we address this issue by focusing on the neural substrates of social and non-social forms of uncertainty. Using functional magnetic resonance imaging (fMRI) we directly compared the neural representations of reward and risk prediction and errors (RePE and RiPE) in social and non- social situations using gambling games. We used a trust betting game to vary uncertainty along a social dimension (trustworthiness), and a card game (Preuschoff et al. 2006) to vary uncertainty along a non-social dimension (pure risk). The trust game was designed to maintain the same structure of the card game. In a first study, we exposed a divide between subcortical and cortical regions when comparing the way these regions process social and non-social forms of uncertainty during outcome anticipation. Activity in subcortical regions reflected social and non-social RePE, while activity in cortical regions correlated with social RePE and non-social RiPE. The second study focused on outcome delivery and integrated the concept of RiPE in non-social settings with that of fairness and monetary utility maximisation in social settings. In particular these results corroborate recent models of anterior insula function (Singer et al. 2009; Seth 2013), and expose a possible neural mechanism that weights fairness and uncertainty but not monetary utility. The third study focused on functionally defined regions of the early visual cortex (V1) showing how activity in these areas, traditionally considered only visual, might reflect motivational prediction errors in addition to known perceptual prediction mechanisms (den Ouden et al 2012). On the whole, while our results do not support unilaterally one or the other theory modeling the underlying neural dynamics of social and non-social forms of decision making, they provide a working framework where both general mechanisms might coexist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents quantitative studies of T cell and dendritic cell (DC) behaviour in mouse lymph nodes (LNs) in the naive state and following immunisation. These processes are of importance and interest in basic immunology, and better understanding could improve both diagnostic capacity and therapeutic manipulations, potentially helping in producing more effective vaccines or developing treatments for autoimmune diseases. The problem is also interesting conceptually as it is relevant to other fields where 3D movement of objects is tracked with a discrete scanning interval. A general immunology introduction is presented in chapter 1. In chapter 2, I apply quantitative methods to multi-photon imaging data to measure how T cells and DCs are spatially arranged in LNs. This has been previously studied to describe differences between the naive and immunised state and as an indicator of the magnitude of the immune response in LNs, but previous analyses have been generally descriptive. The quantitative analysis shows that some of the previous conclusions may have been premature. In chapter 3, I use Bayesian state-space models to test some hypotheses about the mode of T cell search for DCs. A two-state mode of movement where T cells can be classified as either interacting to a DC or freely migrating is supported over a model where T cells would home in on DCs at distance through for example the action of chemokines. In chapter 4, I study whether T cell migration is linked to the geometric structure of the fibroblast reticular network (FRC). I find support for the hypothesis that the movement is constrained to the fibroblast reticular cell (FRC) network over an alternative 'random walk with persistence time' model where cells would move randomly, with a short-term persistence driven by a hypothetical T cell intrinsic 'clock'. I also present unexpected results on the FRC network geometry. Finally, a quantitative method is presented for addressing some measurement biases inherent to multi-photon imaging. In all three chapters, novel findings are made, and the methods developed have the potential for further use to address important problems in the field. In chapter 5, I present a summary and synthesis of results from chapters 3-4 and a more speculative discussion of these results and potential future directions.