2 resultados para Bayesian forecasts
em Glasgow Theses Service
Resumo:
Many exchange rate papers articulate the view that instabilities constitute a major impediment to exchange rate predictability. In this thesis we implement Bayesian and other techniques to account for such instabilities, and examine some of the main obstacles to exchange rate models' predictive ability. We first consider in Chapter 2 a time-varying parameter model in which fluctuations in exchange rates are related to short-term nominal interest rates ensuing from monetary policy rules, such as Taylor rules. Unlike the existing exchange rate studies, the parameters of our Taylor rules are allowed to change over time, in light of the widespread evidence of shifts in fundamentals - for example in the aftermath of the Global Financial Crisis. Focusing on quarterly data frequency from the crisis, we detect forecast improvements upon a random walk (RW) benchmark for at least half, and for as many as seven out of 10, of the currencies considered. Results are stronger when we allow the time-varying parameters of the Taylor rules to differ between countries. In Chapter 3 we look closely at the role of time-variation in parameters and other sources of uncertainty in hindering exchange rate models' predictive power. We apply a Bayesian setup that incorporates the notion that the relevant set of exchange rate determinants and their corresponding coefficients, change over time. Using statistical and economic measures of performance, we first find that predictive models which allow for sudden, rather than smooth, changes in the coefficients yield significant forecast improvements and economic gains at horizons beyond 1-month. At shorter horizons, however, our methods fail to forecast better than the RW. And we identify uncertainty in coefficients' estimation and uncertainty about the precise degree of coefficients variability to incorporate in the models, as the main factors obstructing predictive ability. Chapter 4 focus on the problem of the time-varying predictive ability of economic fundamentals for exchange rates. It uses bootstrap-based methods to uncover the time-specific conditioning information for predicting fluctuations in exchange rates. Employing several metrics for statistical and economic evaluation of forecasting performance, we find that our approach based on pre-selecting and validating fundamentals across bootstrap replications generates more accurate forecasts than the RW. The approach, known as bumping, robustly reveals parsimonious models with out-of-sample predictive power at 1-month horizon; and outperforms alternative methods, including Bayesian, bagging, and standard forecast combinations. Chapter 5 exploits the predictive content of daily commodity prices for monthly commodity-currency exchange rates. It builds on the idea that the effect of daily commodity price fluctuations on commodity currencies is short-lived, and therefore harder to pin down at low frequencies. Using MIxed DAta Sampling (MIDAS) models, and Bayesian estimation methods to account for time-variation in predictive ability, the chapter demonstrates the usefulness of suitably exploiting such short-lived effects in improving exchange rate forecasts. It further shows that the usual low-frequency predictors, such as money supplies and interest rates differentials, typically receive little support from the data at monthly frequency, whereas MIDAS models featuring daily commodity prices are highly likely. The chapter also introduces the random walk Metropolis-Hastings technique as a new tool to estimate MIDAS regressions.
Resumo:
Understanding how virus strains offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, including Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where multiple serotypes often co-circulate, in vitro testing of large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Vaccines will offer cross-protection against closely related strains, but not against those that are antigenically distinct. To be able to predict cross-protection we must understand the antigenic variability within a virus serotype, distinct lineages of a virus, and identify the antigenic residues and evolutionary changes that cause the variability. In this thesis we present a family of sparse hierarchical Bayesian models for detecting relevant antigenic sites in virus evolution (SABRE), as well as an extended version of the method, the extended SABRE (eSABRE) method, which better takes into account the data collection process. The SABRE methods are a family of sparse Bayesian hierarchical models that use spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. In this thesis we demonstrate how the SABRE methods can be used to identify antigenic residues within different serotypes and show how the SABRE method outperforms established methods, mixed-effects models based on forward variable selection or l1 regularisation, on both synthetic and viral datasets. In addition we also test a number of different versions of the SABRE method, compare conjugate and semi-conjugate prior specifications and an alternative to the spike and slab prior; the binary mask model. We also propose novel proposal mechanisms for the Markov chain Monte Carlo (MCMC) simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler. The SABRE method is then applied to datasets from FMDV and the Influenza virus in order to identify a number of known antigenic residue and to provide hypotheses of other potentially antigenic residues. We also demonstrate how the SABRE methods can be used to create accurate predictions of the important evolutionary changes of the FMDV serotypes. In this thesis we provide an extended version of the SABRE method, the eSABRE method, based on a latent variable model. The eSABRE method takes further into account the structure of the datasets for FMDV and the Influenza virus through the latent variable model and gives an improvement in the modelling of the error. We show how the eSABRE method outperforms the SABRE methods in simulation studies and propose a new information criterion for selecting the random effects factors that should be included in the eSABRE method; block integrated Widely Applicable Information Criterion (biWAIC). We demonstrate how biWAIC performs equally to two other methods for selecting the random effects factors and combine it with the eSABRE method to apply it to two large Influenza datasets. Inference in these large datasets is computationally infeasible with the SABRE methods, but as a result of the improved structure of the likelihood, we are able to show how the eSABRE method offers a computational improvement, leading it to be used on these datasets. The results of the eSABRE method show that we can use the method in a fully automatic manner to identify a large number of antigenic residues on a variety of the antigenic sites of two Influenza serotypes, as well as making predictions of a number of nearby sites that may also be antigenic and are worthy of further experiment investigation.