4 resultados para Art - Audio-visual materials

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production and perception of music is a multimodal activity involving auditory, visual and conceptual processing, integrating these with prior knowledge and environmental experience. Musicians utilise expressive physical nuances to highlight salient features of the score. The question arises within the literature as to whether performers’ non-technical, non-sound-producing movements may be communicatively meaningful and convey important structural information to audience members and co-performers. In the light of previous performance research (Vines et al., 2006, Wanderley, 2002, Davidson, 1993), and considering findings within co-speech gestural research and auditory and audio-visual neuroscience, this thesis examines the nature of those movements not directly necessary for the production of sound, and their particular influence on audience perception. Within the current research 3D performance analysis is conducted using the Vicon 12- camera system and Nexus data-processing software. Performance gestures are identified as repeated patterns of motion relating to music structure, which not only express phrasing and structural hierarchy but are consistently and accurately interpreted as such by a perceiving audience. Gestural characteristics are analysed across performers and performance style using two Chopin preludes selected for their diverse yet comparable structures (Opus 28:7 and 6). Effects on perceptual judgements of presentation modes (visual-only, auditory-only, audiovisual, full- and point-light) and viewing conditions are explored. This thesis argues that while performance style is highly idiosyncratic, piano performers reliably generate structural gestures through repeated patterns of upper-body movement. The shapes and locations of phrasing motions are identified particular to the sample of performers investigated. Findings demonstrate that despite the personalised nature of the gestures, performers use increased velocity of movements to emphasise musical structure and that observers accurately and consistently locate phrasing junctures where these patterns and variation in motion magnitude, shape and velocity occur. By viewing performance motions in polar (spherical) rather than cartesian coordinate space it is possible to get mathematically closer to the movement generated by each of the nine performers, revealing distinct patterns of motion relating to phrasing structures, regardless of intended performance style. These patterns are highly individualised both to each performer and performed piece. Instantaneous velocity analysis indicates a right-directed bias of performance motion variation at salient structural features within individual performances. Perceptual analyses demonstrate that audience members are able to accurately and effectively detect phrasing structure from performance motion alone. This ability persists even for degraded point-light performances, where all extraneous environmental information has been removed. The relative contributions of audio, visual and audiovisual judgements demonstrate that the visual component of a performance does positively impact on the over- all accuracy of phrasing judgements, indicating that receivers are most effective in their recognition of structural segmentations when they can both see and hear a performance. Observers appear to make use of a rapid online judgement heuristics, adjusting response processes quickly to adapt and perform accurately across multiple modes of presentation and performance style. In line with existent theories within the literature, it is proposed that this processing ability may be related to cognitive and perceptual interpretation of syntax within gestural communication during social interaction and speech. Findings of this research may have future impact on performance pedagogy, computational analysis and performance research, as well as potentially influencing future investigations of the cognitive aspects of musical and gestural understanding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signifying road-related events with warnings can be highly beneficial, especially when imminent attention is needed. This thesis describes how modality, urgency and situation can influence driver responses to multimodal displays used as warnings. These displays utilise all combinations of audio, visual and tactile modalities, reflecting different urgency levels. In this way, a new rich set of cues is designed, conveying information multimodally, to enhance reactions during driving, which is a highly visual task. The importance of the signified events to driving is reflected in the warnings, and safety-critical or non-critical situations are communicated through the cues. Novel warning designs are considered, using both abstract displays, with no semantic association to the signified event, and language-based ones, using speech. These two cue designs are compared, to discover their strengths and weaknesses as car alerts. The situations in which the new cues are delivered are varied, by simulating both critical and non-critical events and both manual and autonomous car scenarios. A novel set of guidelines for using multimodal driver displays is finally provided, considering the modalities utilised, the urgency signified, and the situation simulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Edo-Japan (c.1603 – 1868) shunga, sexually explicit prints, paintings and illustrated books, were widely produced and disseminated. However, from the 1850s onwards, shunga was suppressed by the government and it has largely been omitted from art history, excluded from exhibitions and censored in publications. Although changes have taken place, cultural institutions continue to be cautious about what they collect and exhibit, with shunga largely remaining a prohibited subject in Japan. Since the 1970s there has been a gradual increase in the acceptance of shunga outside Japan, as evidenced in the growing number of exhibitions and publications. The initial impetus behind this thesis was: Why and how did shunga become increasingly acceptable in Europe and North America in the twentieth century, whilst conversely becoming unacceptable in post-Edo Japan? I discuss how and why attitudes to shunga in the UK and Japan have changed from the Edo period to the present day, and consider how definitions can affect this. My research examines how shunga has been dealt with in relation to private and institutional collecting and exhibitions. In order to gauge modern responses, the 2013 Shunga: Sex and Pleasure in Japanese Art exhibition at the British Museum is used as an in-depth study – utilising mixed methods and an interdisciplinary approach to analyse curatorial and legal decisions, as well as visitor feedback. To-date there are no official or standardised guidelines for the acquisition, cataloguing, or display of sexually explicit artefacts. It is intended that institutions will benefit from my analysis of the changing perceptions of shunga and of previous shunga collections and exhibitions when dealing with shunga or other sexually explicit items in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis proposes a generic visual perception architecture for robotic clothes perception and manipulation. This proposed architecture is fully integrated with a stereo vision system and a dual-arm robot and is able to perform a number of autonomous laundering tasks. Clothes perception and manipulation is a novel research topic in robotics and has experienced rapid development in recent years. Compared to the task of perceiving and manipulating rigid objects, clothes perception and manipulation poses a greater challenge. This can be attributed to two reasons: firstly, deformable clothing requires precise (high-acuity) visual perception and dexterous manipulation; secondly, as clothing approximates a non-rigid 2-manifold in 3-space, that can adopt a quasi-infinite configuration space, the potential variability in the appearance of clothing items makes them difficult to understand, identify uniquely, and interact with by machine. From an applications perspective, and as part of EU CloPeMa project, the integrated visual perception architecture refines a pre-existing clothing manipulation pipeline by completing pre-wash clothes (category) sorting (using single-shot or interactive perception for garment categorisation and manipulation) and post-wash dual-arm flattening. To the best of the author’s knowledge, as investigated in this thesis, the autonomous clothing perception and manipulation solutions presented here were first proposed and reported by the author. All of the reported robot demonstrations in this work follow a perception-manipulation method- ology where visual and tactile feedback (in the form of surface wrinkledness captured by the high accuracy depth sensor i.e. CloPeMa stereo head or the predictive confidence modelled by Gaussian Processing) serve as the halting criteria in the flattening and sorting tasks, respectively. From scientific perspective, the proposed visual perception architecture addresses the above challenges by parsing and grouping 3D clothing configurations hierarchically from low-level curvatures, through mid-level surface shape representations (providing topological descriptions and 3D texture representations), to high-level semantic structures and statistical descriptions. A range of visual features such as Shape Index, Surface Topologies Analysis and Local Binary Patterns have been adapted within this work to parse clothing surfaces and textures and several novel features have been devised, including B-Spline Patches with Locality-Constrained Linear coding, and Topology Spatial Distance to describe and quantify generic landmarks (wrinkles and folds). The essence of this proposed architecture comprises 3D generic surface parsing and interpretation, which is critical to underpinning a number of laundering tasks and has the potential to be extended to other rigid and non-rigid object perception and manipulation tasks. The experimental results presented in this thesis demonstrate that: firstly, the proposed grasp- ing approach achieves on-average 84.7% accuracy; secondly, the proposed flattening approach is able to flatten towels, t-shirts and pants (shorts) within 9 iterations on-average; thirdly, the proposed clothes recognition pipeline can recognise clothes categories from highly wrinkled configurations and advances the state-of-the-art by 36% in terms of classification accuracy, achieving an 83.2% true-positive classification rate when discriminating between five categories of clothes; finally the Gaussian Process based interactive perception approach exhibits a substantial improvement over single-shot perception. Accordingly, this thesis has advanced the state-of-the-art of robot clothes perception and manipulation.