2 resultados para Application of Data-driven Modelling in Water Sciences
em Glasgow Theses Service
Resumo:
The flux of foreign investment into the water industry led to the internationalisation of contracts and of the method of settlement of possible disputes. When disputes over the performance of a water concession give origin to investor-state arbitrations, public authorities are put in a challenging position. The state need to combine two different roles – its role in the provision of services of public interest and the fulfilment of its international legal obligations arising from international investment agreements. The complexity of this relationship is patent in a variety of procedural and substantive issues that have been surfacing in arbitration proceedings conducted before the International Centre for Settlement of Investment Disputes. The purpose of this dissertation is to discuss the impact of investment arbitration on the protection of public interests associated with water services. In deciding these cases arbitrators are contributing significantly in shaping the contours and substance of an emerging international economic water services regime. Through the looking glass of arbitration awards one can realise the substantial consequences that the international investment regime has been producing on water markets and how significantly it has been impacting the public interests associated with water services. Due consideration of the public interests in water concession disputes requires concerted action in two different domains: changing the investment arbitration mechanism, by promoting the transparency of proceedings and the participation of non-parties; and changing the regulatory framework that underpins investments in water services. Combined, these improvements are likely to infuse public interests into water concession arbitrations.
Resumo:
This thesis presents quantitative studies of T cell and dendritic cell (DC) behaviour in mouse lymph nodes (LNs) in the naive state and following immunisation. These processes are of importance and interest in basic immunology, and better understanding could improve both diagnostic capacity and therapeutic manipulations, potentially helping in producing more effective vaccines or developing treatments for autoimmune diseases. The problem is also interesting conceptually as it is relevant to other fields where 3D movement of objects is tracked with a discrete scanning interval. A general immunology introduction is presented in chapter 1. In chapter 2, I apply quantitative methods to multi-photon imaging data to measure how T cells and DCs are spatially arranged in LNs. This has been previously studied to describe differences between the naive and immunised state and as an indicator of the magnitude of the immune response in LNs, but previous analyses have been generally descriptive. The quantitative analysis shows that some of the previous conclusions may have been premature. In chapter 3, I use Bayesian state-space models to test some hypotheses about the mode of T cell search for DCs. A two-state mode of movement where T cells can be classified as either interacting to a DC or freely migrating is supported over a model where T cells would home in on DCs at distance through for example the action of chemokines. In chapter 4, I study whether T cell migration is linked to the geometric structure of the fibroblast reticular network (FRC). I find support for the hypothesis that the movement is constrained to the fibroblast reticular cell (FRC) network over an alternative 'random walk with persistence time' model where cells would move randomly, with a short-term persistence driven by a hypothetical T cell intrinsic 'clock'. I also present unexpected results on the FRC network geometry. Finally, a quantitative method is presented for addressing some measurement biases inherent to multi-photon imaging. In all three chapters, novel findings are made, and the methods developed have the potential for further use to address important problems in the field. In chapter 5, I present a summary and synthesis of results from chapters 3-4 and a more speculative discussion of these results and potential future directions.