2 resultados para Acceleration (Physics)

em Glasgow Theses Service


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis considers Eliot's critical writing from the late 1910s till the mid-1930s, in the light of his PhD thesis - Knowledge and Experience in the Philosophy of F. H. Bradley - and a range of unpublished material: T S. Eliot's Philosophical Essays and Notes (1913- 4) in the Hayward Bequest (King's College, Cambridge University); T. S. Eliot's Family Papers in the T. S. Eliot Collection at the Houghton Library (Harvard University); and items from the Harvard University Archives at the Pusey Library. 'Me thesis offers a comprehensive view of Eliot's critical development throughout this important period. It starts by considering The Sacred Wood's ambivalence towards the metaphysical philosophy of F. H. Bradley and Eliot's apparent adoption of a scientific method, under the influence of Bertrand Russell. It will be argued that Eliot uses rhetorical strategies which simultaneously subvert the method he is propounding, and which set the tone for an assessment of his criticism throughout the 1920s. His indecision, in this period, about the label 'Metaphysical' for some poets of the seventeenth century, reveals the persistence of the philosophical thought he apparently rejects in 1916, when he chooses not to pursue a career in philosophy in Harvard. This rhetorical tactic achieves its fulfilment in Dante (1929), where Eliot finds a model in the medieval allegorical method and 'philosophical' poetry. Allegory is also examined in connection with the evaluation of Eliot's critical writings themselves to determine, for instance, the figurative dimension of his early scientific vocabulary and uncover metaphysical residues he had explicitly disowned but would later embrace. Finally, it is suggested that, the hermeneutics of allegory are historical and it is used here to test the relationship between Eliot's early and later critical writings, that is the early physics and the later metaphysics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to measure tiny variations in the local gravitational acceleration allows – amongst other applications – the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required (tens of μGal/√Hz), and stabilities required (periods of days to weeks) for such applications: free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides; the elastic deformation of the Earth’s crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of excessive cost (£70 k) and high mass (<8 kg). In this thesis, the building of a microelectromechanical system (MEMS) gravimeter with a sensitivity of 40 μGal/√Hz in a package size of only a few cubic centimetres is discussed. MEMS accelerometers – found in most smart phones – can be mass-produced remarkably cheaply, but most are not sensitive enough, and none have been stable enough to be called a ‘gravimeter’. The remarkable stability and sensitivity of the device is demonstrated with a measurement of the Earth tides. Such a measurement has never been undertaken with a MEMS device, and proves the long term stability of the instrument compared to any other MEMS device, making it the first MEMS accelerometer that can be classed as a gravimeter. This heralds a transformative step in MEMS accelerometer technology. Due to their small size and low cost, MEMS gravimeters could create a new paradigm in gravity mapping: exploration surveys could be carried out with drones instead of low-flying aircraft; they could be used for distributed land surveys in exploration settings, for the monitoring of volcanoes; or built into multi-pixel density contrast imaging arrays.