5 resultados para fisk
em eScholarship Repository - University of California
Resumo:
The mercury-indium phase diagram has been investigated over the whole composition range from -78°C to the melting point of indium, using thermal analysis, X-ray and superconductivity techniques. This is believed to be the first application of superconductivity measurements to phase diagram investigations. A compound, HgIn, of very limited range of composition, melts congruently at -19.3°C; and gives rise to eutectics at 61.5 at. % indium and -31°C, and at 34.7% indium and -37.2°C. The β phase extends from 2.5 to 19.1 % indium and has a maximum melting point of -14.2°C at 14.2% indium. It forms a peritectic or eutectic at a temperature indistinguishable from the melting point of pure mercury with a solid solution in mercury containing some, but less than 0.3%, indium. A transition from face-centred tetragonal to face-centred cubic in the indium-rich solid solutions at about 93% indium gives rise to a peritectic at 108°C. The solubility of mercury in this face-centred cubic phase falls from about 22% at-31°C to 13% at -78°C. © 1963.
Resumo:
Magnetic susceptibility data suggest that the crystal field splittings of the 4f levels of Ce and Pr impurities are larger in metallic YB6 than in isostructural and semiconducting SrB6, contrary to what might be expected. © 1969.
Resumo:
We present data on the depression of the superconducting transition temperatures of YB(6) and ZrB(12) by rare earth impurities. These data show unusual features. Ce in YB(6) is in some ways analogous to Yb in ZrB(12), and this analogy also appears to hold between Ce in CeB(6) and YB in YbB(12).
Resumo:
Praseodymium, under very high pressures, shows a magnetic behavior similar to that of cerium at normal pressure.
Resumo:
The Zr isotope effect appears to be much stronger in ZrB12 than in elemental Zr (the B isotope effect in ZrB12 is known to be small). The superconductivity of ZrB12 is apparently caused by optical phonon modes associated with the internal motion of Zr atoms inside boron cages. © 1971.