1 resultado para Generalized ordinary differential equations
em eScholarship Repository - University of California
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (9)
- Aston University Research Archive (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (19)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (12)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (48)
- CaltechTHESIS (35)
- Cambridge University Engineering Department Publications Database (29)
- CentAUR: Central Archive University of Reading - UK (27)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (30)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- eScholarship Repository - University of California (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (223)
- Instituto Politécnico do Porto, Portugal (6)
- Massachusetts Institute of Technology (5)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (4)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- Queensland University of Technology - ePrints Archive (162)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (7)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (76)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (14)
- Universidade Complutense de Madrid (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Montréal, Canada (9)
- University of Connecticut - USA (3)
- University of Michigan (55)
- University of Queensland eSpace - Australia (20)
- University of Southampton, United Kingdom (18)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
A vector field in n-space determines a competitive (or cooperative) system of differential equations provided all of the off-diagonal terms of its Jacobian matrix are nonpositive (or nonnegative). The main results in this article are the following. A cooperative system cannot have nonconstant attracting periodic solutions. In a cooperative system whose Jacobian matrices are irreducible the forward orbit converges for almost every point having compact forward orbit closure. In a cooperative system in 2 dimensions, every solution is eventually monotone. Applications are made to generalizations of positive feedback loops.