4 resultados para volunteer

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two human deaths caused by Australian bat lyssavirus (ABL) infection have been reported since 1996. Information was obtained from 205 persons (mostly adults from south Brisbane and the South Coast of Queensland), who reported potential ABL exposure to the Brisbane Southside Public Health Unit from November 1,1996, to January 31, 1999. Volunteer animal handlers accounted for 39% of potential exposures, their family members for 12%, professional animal handlers for 14%, community members who intentionally handled bats for 31%, and community members with contacts initiated by bats for 4%. The prevalence of Lyssavirus detected by fluorescent antibody test in 366 sick, injured, or orphaned bats from the area was 6%. Sequelae of exposure, including the requirement for expensive postexposure prophylaxis, may be reduced by educating bat handlers and the public of the risks involved in handling Australian bats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After more than 30 years in which ‘Tifgreen’ and ‘Tifdwarf’ were the only greens-quality varieties available, the choice for golf courses and bowls clubs in northern Australia has been expanded to include six new Cynodon hybrids [Cynodon dactylon (L.) Pers x Cynodon transvaalensis Burtt-Davy]. Five of these – ‘Champion Dwarf’ (Texas), ‘MS-Supreme’ (Mississippi), FloraDwarf™ (Florida), ‘TifEagle’ (Georgia), MiniVerde™ (Arizona) - are from US breeding programs, while the sixth, ‘TL2’ (marketed as Novotek™) was selected in north Queensland. The finer, denser and lower growing habit of the “ultradwarf” cultivars allows very low mowing heights (e.g. 2.5 mm) to be imposed, resulting in denser and smoother putting and bowls surfaces. In addition to the Cynodon hybrids, four new greens quality seashore paspalum (Paspalum vaginatum O. Swartz) cultivars including ‘Sea Isle 2000’, Sea Isle Supreme™, Velvetene™ and Sea Dwarf™ (where tolerance of salty water is required) expands the range of choices for greens in difficult environments. The project was developed to determine (a) the appropriate choice of cultivar for different environments and budgets, and (b) best management practices for the new cultivars which differ from the Cynodon hybrid industry standards ‘Tifgreen’ and ‘Tifdwarf’. Management practices, particularly fertilising, mowing heights and frequency, and thatch control were investigated to determine optimum management inputs and provide high quality playing surfaces with the new grasses. To enable effective trialling of these new and old cultivars it was essential to have a number of regional sites participating in the study. Drought and financial hardship of many clubs presented an initial setback with numerous clubs wanting to be involved in the study but were unable to commit due to their financial position at the time. The study was fortunate to have seven regional sites from Queensland, New South Wales, Victoria and South Australia volunteer to be involved in the study which would add to the results being collected at the centralised test facility being constructed at DEEDI’s Redlands Research Station. The major research findings acquired from the eight trial sites included: • All of the new second generation “ultradwarf” couchgrasses tend to produce a large amount of thatch with MiniVerde™ being the greatest thatch producer, particularly compared to ‘Tifdwarf’ and ‘Tifgreen’. The maintenance of the new Cynodon hybrids will require a program of regular dethatching/grooming as well as regular light dustings of sand. Thatch prevention should begin 3 to 4 weeks after planting a new “ultradwarf” couchgrass green, with an emphasis on prevention rather than control. • The “ultradwarfs” produced faster green speeds than the current industry standards ‘Tifgreen’ and ‘Tifdwarf’. However, all Cynodon hybrids were considerably faster than the seashore paspalums (e.g. comparable to the speed diference of Bentgrass and couchgrass) under trial conditions. Green speed was fastest being cut at 3.5 mm and rolled (compared to 3.5 mm cut, no roll and 2.7 mm cut, no roll). • All trial sites reported the occurrence of disease in the Cynodon hybrids with the main incidence of disease occurring during the dormancy period (autumn and winter). The main disease issue reported was “patch diseases” which includes both Gaumannomyces and Rhizoctonia species. There was differences in the severity of the disease between cultivars, however, the severity of the disease was not consistent between cultivars and is largely attributed to an environment (location) effect. In terms of managing the occurrence of disease, the incidence of disease is less severe where there is a higher fertility rate (about 3 kgN/100m2/year) or a preventitatve fungicide program is adopted. • Cynodon hybrid and seashore paspalum cultivars maintained an acceptable to ideal surface being cut between 2.7 mm and 5.0 mm. “Ultradwarf” cultivars can tolerate mowing heights as low as 2.5 mm for short periods but places the plant under high levels of stress. Greens being maintained at a continually lower cutting height (e.g. 2.7 mm) of both species is achievable, but would need to be cut daily for best results. Seashore paspalums performed best when cut at a height of between 2.7 mm and 3.0 mm. If a lower cutting height is adopted, regular and repeated mowings are required to reduce scalping and produce a smooth surface. • At this point in time the optimum rate of nitrogen (N) for the Cynodon hybrids is 3 kg/100m2/year and while the seashore paspalums is 2 to 3 kg/100m2/year. • Dormancy occurred for all Cynodon and seashore paspalum culitvars from north in Brisbane (QLD) to south in Mornington Peninsula (VIC) and west to Novar Gardens (SA). Cynodon and Paspalum growth in both Victoria and South Australia was less favourable as a result of the cooler climates. • After combining the data collected from all eight sites, the results indicated that there can be variation (e.g. turfgrass quality, colour, disease resistance, performace) depending on the site and climatic conditions. Such evidence highlights the need to undertake genotype by environment (G x E) studies on new and old cultivars prior to conversion or establishment. • For a club looking to select either a Cynodon hybrid or seashore paspalum cultivar for use at their club they need to: - Review the research data. - Look at trial plots. - Inspect greens in play that have the new grasses. - Select 2 to 3 cultivars that are considered to be the better types. - Establish them in large (large enough to putt on) plots/nursery/practice putter. Ideally the area should be subjected to wear. - Maintain them exactly as they would be on the golf course/lawn bowls green. This is a critical aspect. Regular mowing, fertilising etc. is essential. - Assess them over at least 2 to 3 years. - Make a selection and establish it in a playing green so that it is subjected to typical wear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method used to manage a fallow can influence your overall farm profitability. The benefits of a well managed fallow include improved soil health, reduced weed control costs, a reduction in the number of machinery operations and an increase in sugarcane productivity. Growers generally have two main options for managing their fallow; 1) bare fallow or 2) rotational crop. A bare fallow predominantly involves the use of tillage or herbicides to keep the block free of weeds and volunteer cane. Growing a rotational crop generally uses legumes like soybeans or cowpeas because of their soil health and nitrogen benefits. This paper looks into some of these methods and the flow on effects on farm profitability. Fallow management should never be viewed in isolation, as it is an integral part of the cane farming system. In this analysis we will investigate the effect of fallow management and farming system practices on the whole of farm profitability. There are many factors to consider when looking at different fallow management options. These include the type of farming system practices used and the suitability of a legume crop to a particular situation. Legume crops may not be suited to all situations, therefore it is recommended to consult with your local agronomist for more specific advice. One method of examining the options is to work through an example. In this case we will look at four options that are based on some common fallow management and farming system practices used in the Herbert region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integration of multiple herbicide-resistant genes (trait stacking) into crop plants would allow over the top application of herbicides that are otherwise fatal to crops. The US has just approved Bollgard II® XtendFlex™ cotton which has dicamba, glyphosate and glufosinate resistance traits stacked. The pace of glyphosate resistance evolution is expected to be slowed by this technology. In addition, over the top application of two more herbicides may help to manage hard to kill weeds in cotton such as flax leaf fleabane and milk thistle. However, there are some issues that need to be considered prior to the adoption of this technology. Wherever herbicide tolerant technology is adopted, volunteer crops can emerge as a weed problem, as can herbicide resistant weeds. For cotton, seed movement is the most likely way for resistant traits to move around. Management of multiple stack volunteers may add additional complexity to volunteer management in cotton fields and along roadsides. This paper attempts to evaluate the pros and cons of trait stacking technology by analysing the available literature in other crop growing regions across the world. The efficacy of dicamba and glufosinate on common weeds of the Australian cotton system, herbicide resistance evolution, synergy and antagonisms due to herbicide mixtures, drift hazards and the evolution of herbicide resistance to glyphosate, glufosinate and dicamba were analysed based on the available literature.