11 resultados para voluntary retirement
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Supplements are often fed to ruminants in extensive grazing situations to provide minerals and nitrogen likely to be deficient in pasture. However a large proportion of animals offered such supplements may not consume any supplement, while among consumer animals the variability in supplement intake may be high (Wheeler et al., 1980; Dixon et al., 1998). An experiment examined the distribution of intake of a molasses-based supplement containing phosphorus and urea in a breeder herd. A herd of mixed-age breeder cows, calves, heifers and bulls were offered ad libitum a molasses-based supplement containing 13% urea and 17% phosphoric acid. After 2 weeks lithium-labelled supplement (2 mg Li/kg LW) was offered on one day to measure individual intakes of supplement. The molasses was offered in three 560 mm diameter feeders placed together near the water point.
Resumo:
Loose mineral mix (LMM) supplements are often fed to ruminants in extensive grazing situations to provide minerals and nitrogen likely to be deficient in pasture. However a large proportion of animals offered such supplements may not consume any supplement, while among consumer animals the variability in supplement intake may be high (Wheeler et al., 1980; Dixon et al., 1996). Two experiments examined the distribution of intake of LMM supplements offered to heifers grazing in mob and paddock sizes representative of commercial cattle properties.
Resumo:
The cuticular waxes of forage plants contain long chain n-alkanes with odd carbon chain lengths in the range C25-C37 which are quantitatively recovered in faeces. When these concentrations are used with the concentrations of administered synthetic even chain length alkanes, the voluntary intake (VI), faecal output (FO) and digestibility (DMD) of forages can be estimated (Dove and Mayes 1991, 1996).
Resumo:
Molasses-based liquid supplements fed ad libitum are widely used to provide additional metabolisable energy, non-protein N (NPN) and other nutrients to grazing cattle, but it is often difficult to achieve target intakes of supplementary nutrients. Experiments examined the effects of increasing concentrations of phosphoric acid, urea and ammonium sulfate on the voluntary intake (VI) of molasses-based supplements offered ad libitum to heifers grazing tropical pastures. In Experiment 1, the VI of a supplement containing 78 g urea/kg and 26 g phosphoric acid/kg as-fed (M80U+PA) was 3.61 g DM/kg liveweight (LW) per day, and provided 181 mg NPN and 32.4 mg phosphorus (P)/kg LW per day. Increasing the urea content of the supplement to 137 g/kg (M140U+PA) or 195 g/kg (M200U+PA) reduced VI of supplement DM, NPN and P by up to 76%, 44% and 80%, respectively. VI of supplement containing ammonium sulfate (M140+AS+PA) was lower (P < 0.05) than that of M140U+PA supplement, and tended (P > 0.05) to be lower than that of M200U+PA supplement. In experiment 2, the VI by heifers of a supplement containing 200 g urea/kg (M200U) was 1.53 g supplement DM/kg LW per day, which provided 186 mg NPN/kg LW per day. Inclusion of 49 g phosphoric acid/kg as-fed in this supplement (M190U+50PA) reduced (P < 0.05) VI of supplement DM and NPN by 33% and 36%, respectively, while inclusion of 97 g phosphoric acid/kg (M180U+100PA) reduced (P < 0.05) VI of supplement DM and NPN by 43% and 48%, respectively. The M190U+50PA and M180U+100PA supplements provided 16 and 26 mg P/kg LW per day, respectively. Heifers not fed supplements gained 0.07 kg/day, and the M200U supplement increased (P < 0.05) LW gain to 0.18 kg/day. LW gain was further increased (P < 0.05) by the M190U+50PA to 0.28 kg/day, indicating a growth response to supplementary P. No adverse effects of the supplements on animal health were observed in any of the experiments. In conclusion, addition of urea and/or phosphoric acid to molasses supplements effectively reduced VI of supplementary DM, NPN and P, and in the circumstances of Experiment 2, both molasses-urea and P supplements increased heifer LW.
Resumo:
Loose mineral mix (LMM) supplements based on ingredients such as salt, urea and minerals offered ad libitum are widely used to provide additional nutrients to grazing cattle, but it is often difficult to achieve target intakes. An experiment with heifers grazing mature tropical pasture examined the effects of substituting 80, 160 or 320 g/kg of the salt in a LMM supplement with cottonseed meal on the voluntary intake of the LMM supplements by paddock groups of heifers over 10 weeks. Average voluntary intake of a LMM containing (g/kg) 640 salt, 300 urea and 60 ammonium sulfate (40.2 g DM and 6.14 g total nitrogen/day) was increased linearly (P < 0.001) to 50.8 g DM and 8.88 g total nitrogen/day when up to 320 g/kg cottonseed meal was substituted for salt in the LMM. This increase in intake of nitrogen in LMM was due to the increase in voluntary intake of the supplement rather than the increased nitrogen concentration of supplement. The distribution of daily intake of supplement within paddock groups of heifers was estimated during Weeks 5 and 10 using supplements labelled with lithium sulfate. Neither the coefficient of variation within paddock groups of heifers in supplement intake (mean 96%), nor the proportion of non-consumers of supplement (mean 17%), was changed (P > 0.05) by substitution of salt with cottonseed meal. In conclusion, the inclusion of a palatable protein meal into LMM increased the voluntary intake of this type of supplement.
Resumo:
The role of n-alkanes in animal nutrition research has recently been reviewed by Dove and Mayes (1996). The measurement of voluntary intake (VI) using the naturally occurring odd chain length alkanes C31 or C33 in conjunction with administered even chain length alkanes such as C32 and C36 provides several advantages over the more conventional methods. Much of the development work involving this technology has been carried out with sheep or dairy cattle fed predominantly temperate pasture. Laredo et al., (1991) have published alkane profiles for a number of introduced tropical pasture grasses but no alkane profiles have been published for native tropical pasture grasses. Animal production for a consuming world : proceedings of 9th Congress of the Asian-Australasian Association of Animal Production Societies [AAAP] and 23rd Biennial Conference of the Australian Society of Animal Production [ASAP] and 17th Annual Symposium of the University of Sydney, Dairy Research Foundation, [DRF]. 2-7 July 2000, Sydney, Australia.
Resumo:
Near infrared (NIR) spectroscopy, usually in reflectance mode, has been applied to the analysis of faeces to measure the concentrations of constituents such as total N, fibre, tannins and delta C-13. In addition, an unusual and exciting application of faecal NIR [F.NIR] analyses is to directly predict attributes of the diet of herbivores such as crude protein and fibre contents, proportions of plant species and morphological components, diet digestibility and voluntary DM intake. This is an unusual application of NIR spectroscopy insofar as the spectral measurements are made, not on the material of interest [i.e. the diet), but on a derived material (i.e. faeces). Predictions of diet attributes from faecal spectra clearly depend on there being sufficient NIR spectral information in the diet residues present in faeces to describe the diet, although endogenous components of faeces such as undigested debris of micro-organisms from the rumen and Large intestine and secretions into the gastrointestinal tract wilt also contribute spectral information. Spectra of forage and of faeces derived from the forage are generally similar and the observed differences are principally in the spectral regions associated with constituents of forages known to be of low, or of high, digestibility. Some diet components (for example, ureal which are likely to be entirely digested apparently cannot be predicted from faecal NIR spectra because they cannot contribute to faecal spectra except through modifying the microbial and endogenous components. The errors and robustness of F.NIR calibrations to predict the crude protein concentration and digestibility of the diet of herbivores are generally comparable with those to directly predict the same attributes in forage from NIR spectra of the forage. Some attributes of the animal, such as species, gender, pregnancy status and parasite burden have been successfully discriminated into classes based on their faecal NIR spectra. Such discrimination was likely associated with differences in the diet selected and/or differences in the metabolites excreted in the faeces. NIR spectroscopy of faeces has usually involved scanning dried and ground samples in monochromators in the 400-2500nm or 1100-2500nm ranges. Results satisfactory for the purpose have also been reported for dried and ground faeces scanned using a diode array instrument in the 800-1700nm range and for wet faeces and slurries of excreta scanned with monochromators. Chemometric analysis of faecal spectra has generally used the approaches established for forage analysis. The capacity to predict many attributes of the diet, and some aspects of animal physiology, from NIR spectra of faeces is particularly useful to study the quality and quantity of the diet selected by both domestic and feral grazing herbivores and to enhance production and management of both herbivores and their grazing environment.
Effect of sorghum ergot (Claviceps africana) on the performance of steers (Bos taurus) in a feedlot.
Resumo:
The effect of ergot (Claviceps africana) in naturally infected sorghum was assessed in feedlot rations. Thirty-two Hereford steers (Bos taurus) in individual pens with access to shade were adapted to feedlot conditions and then offered one of four rations containing 0, 4.4, 8.8 or 17.6 mg/kg of ergot alkaloids (84% dihydroergosine, 10% dihydroelymoclavine and 6% festuclavine), equivalent to ~0, 10, 20 or 40 g/kg ergot (sclerotia/sphacelia) in the rations. These rations were withdrawn at noon on the second day because of severe hyperthermia and almost complete feed refusal in ergot-fed steers. After recovery on ergot-free rations for 5 days, treatment groups were incrementally introduced, over a further 3–12 days, to rations containing 0, 1.1, 2.2 or 4.4 mg/kg of alkaloids (~0, 2.5, 5 or 10 g/kg ergot, respectively). Relative exposure to ergot was maintained, so that the zero- (control), low-, medium- and high-ergot groups remained so. Steers were individually fed ad libitum, and water was freely available. Steers in all ergot-fed groups had significantly elevated rectal temperatures at 0800–1000 hours, even when the temperature–humidity index was only moderate (~70), and displayed other signs of hyperthermia (increased respiration rate, mouth breathing, excessive salivation and urination), as the temperature–humidity index increased to 73–79 during the day. Plasma prolactin was significantly reduced in ergot-fed groups. Voluntary feed intakes (liveweight basis) of the ergot-fed groups were significantly reduced, averaging 94, 86 and 86%, respectively, of the feed intakes of the control group. Hair coats were rough. While the control steers grew from a mean initial liveweight of 275 kg to a suitable slaughter weight of 455 kg in 17 weeks (growth rate 1.45 kg/day), ergot-fed groups gained only 0.77–1.10 kg/day and took at least 5 weeks longer to reach the slaughter weight, despite removal of ergot at the same time as control steers were sent to slaughter. Sorghum ergot, even at low concentrations (1.1 mg alkaloids/kg feed) is severely detrimental to the performance of steers in the feedlot.
Resumo:
The global importance of grasslands is indicated by their extent; they comprise some 26% of total land area and 80% of agriculturally productive land. The majority of grasslands are located in tropical developing countries where they are particularly important to the livelihoods of some one billion poor peoples. Grasslands clearly provide the feed base for grazing livestock and thus numerous high-quality foods, but such livestock also provide products such as fertilizer, transport, traction, fibre and leather. In addition, grasslands provide important services and roles including as water catchments, biodiversity reserves, for cultural and recreational needs, and potentially a carbon sink to alleviate greenhouse gas emissions. Inevitably, such functions may conflict with management for production of livestock products. Much of the increasing global demand for meat and milk, particularly from developing countries, will have to be supplied from grassland ecosystems, and this will provide difficult challenges. Increased production of meat and milk generally requires increased intake of metabolizable energy, and thus increased voluntary intake and/or digestibility of diets selected by grazing animals. These will require more widespread and effective application of improved management. Strategies to improve productivity include fertilizer application, grazing management, greater use of crop by-products, legumes and supplements and manipulation of stocking rate and herbage allowance. However, it is often difficult to predict the efficiency and cost-effectiveness of such strategies, particularly in tropical developing country production systems. Evaluation and on-going adjustment of grazing systems require appropriate and reliable assessment criteria, but these are often lacking. A number of emerging technologies may contribute to timely low-cost acquisition of quantitative information to better understand the soil-pasture-animal interactions and animal management in grassland systems. Development of remote imaging of vegetation, global positioning technology, improved diet markers, near IR spectroscopy and modelling provide improved tools for knowledge-based decisions on the productivity constraints of grazing animals. Individual electronic identification of animals offers opportunities for precision management on an individual animal basis for improved productivity. Improved outcomes in the form of livestock products, services and/or other outcomes from grasslands should be possible, but clearly a diversity of solutions are needed for the vast range of environments and social circumstances of global grasslands.
Resumo:
The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress HS; temperature-humidity index (THI) ~78 or kept in a THI < 70 environment and pair-fed with heat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THI < 70 environment with ad libitum feeding (TN-AL). A subsequent recovery period (7 d), with THI < 70 and ad libitum feeding followed. Intake accounted for only part of the effects of heat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THI < 70 and ad libitum intake were restored. Heat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy.