2 resultados para variance change point detection

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the idea that plasticity in farm management introduces resilience to change and allows farm businesses to perform when operating in highly variable environments. We also argue for the need to develop and apply more integrative assessments of farm performance that combine the use of modelling tools with deliberative processes involving farmers and researchers in a co-learning process, to more effectively identify and implement more productive and resilient farm businesses. In a plastic farming system, farm management is highly contingent on environmental conditions. In plastic farming systems farm managers constantly vary crops and inputs based on the availability of limited and variable resources (e.g. land, water, finances, labour, machinery, etc.), and signals from its operating environment (e.g. climate, markets), with the objective of maximising a number of, often competing, objectives (e.g. maximise profits, minimise risks, etc.). In contrast in more rigid farming systems farm management is more calendar driven and relatively fixed sequences of crops are regularly followed over time and across the farm. Here we describe the application of a whole farm simulation model to (i) compare, in silico, the sensitivity of two farming systems designs of contrasting levels of plasticity, operating in two contrasting environments, when exposed to a stressor in the form of climate change scenarios;(ii) investigate the presence of interactions and feedbacks at the field and farm levels capable of modifying the intensity and direction of the responses to climate signals; and (iii) discuss the need for the development and application of more integrative assessments in the analysis of impacts and adaptation options to climate change. In both environments, the more plastic farm management strategy had higher median profits and was less risky for the baseline and less intensive climate change scenarios (2030). However, for the more severe climate change scenarios (2070), the benefit of plastic strategies tended to disappear. These results suggest that, to a point, farming systems having higher levels of plasticity would enable farmers to more effectively respond to climate shifts, thus ensuring the economic viability of the farm business. Though, as the intensity of the stress increases (e.g. 2070 climate change scenario) more significant changes in the farming system might be required to adapt. We also found that in the case studies analysed here, most of the impacts from the climate change scenarios on farm profit and economic risk originated from important reductions in cropping intensity and changes in crop mix rather than from changes in the yields of individual crops. Changes in cropping intensity and crop mix were explained by the combination of reductions in the number of sowing opportunities around critical times in the cropping calendar, and to operational constraints at the whole farm level i.e. limited work capacity in an environment having fewer and more concentrated sowing opportunities. This indicates that indirect impacts from shifts in climate on farm operations can be more important than direct impacts from climate on the yield of individual crops. The results suggest that due to the complexity of farm businesses, impact assessments and opportunities for adaptation to climate change might also need to be pursued at higher integration levels than the crop or the field. We conclude that plasticity can be a desirable characteristic in farming systems operating in highly variable environments, and that integrated whole farm systems analyses of impacts and adaptation to climate change are required to identify important interactions between farm management decision rules, availability of resources, and farmer's preference.