3 resultados para utilization of waste

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a response to the HAL banana call, this project will look to further utilization of bananas not suitable for the retail market.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resins are a critical resource for stingless bees and resin-collecting bees act as seed dispersers in tropical plants. We describe the diurnal foraging patterns of colonies of Trigona sapiens and T. hockingsi on resin and pollen. We also document patterns of waste removal and seed dispersal of Corymbia torelliana. At most, only 10% of foragers collected resin or dispersed seed. Nevertheless, bees dispersed 1-3 seeds outside the nest per 5 minutes, and 38-114 seeds per day for each nest. The proportion of returning bees carrying pollen was highest in the morning for both species. The proportion of foragers returning with resin loads showed no significant diurnal variation in any season. Waste removal activity peaked in the afternoon for T. sapiens and in the morning for T. hockingsi. Seed removal peaked in the afternoon in one year only for T. sapiens. Bees dispersed thousands of seeds of C. torelliana over the season even though only a small proportion of the colony was engaged in seed transport.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recolonisation of soil by macrofauna (especially ants, termites and earthworms) in rehabilitated open-cut mine sites is inevitable and, in terms of habitat restoration and function, typically of great value. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration, seepage, runoff generation and soil erosion. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, the soil macrofauna is typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions and field trials on post-mining lands are required to quantify (i) macrofauna–soil structure interactions, (ii) functional dynamics of macrofauna taxa,and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.