3 resultados para triterpene esters
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Investigation of Pimelea elongata ("Lakebed Pimelea") afforded 18 tigliane- and daphnane-type diterpenes (1-18). Eight of these were new compounds: four (1-3, 5) tigliane esters and four (7, 8, 10, 11) daphnane orthoesters. The 10 known compounds were 12-O-decanoylphorbol-13-acetate (4), P. simplex subtoxin B (6), wikstroelide E (9), pimelotides A and B (12, 13), gnidiglaucin (14), simplexin (15), huratoxin (16), kirkinine D (17), and 12-beta-acetoxyhuratoxin (18). The structures and relative configurations of the new compounds were determined by ID and 2D NMR spectroscopic studies in combination with MS analyses.
Resumo:
Analysis of headspace volatiles by gas chromatography/mass spectrometry from king (Penaeus plebejus), banana (P. merguiensis), tiger (P. esculentus/semisulcatus) and greasy (Metapenaeus bennettae) prawns stored in ice or ice slurry, which is effectively an environment of low oxygen tension, indicated the presence of amines at the early stages of storage (less than 8 days) irrespective of the nature of the storage media. Esters were more prevalent in prawns stored on ice (normal oxygen conditions) at the latter stages of storage (more than 8 days) and were only produced by Pseudomonas fragi, whereas sulphides and amines occurred whether the predominant spoilage organism was Ps.fragi or Shewanella putrefaciens. The free amino acid profiles of banana and king prawns were high in arginine (12–14%) and low in cysteine (0.1–0.17%) and methionine (0.1–0.2%). Filter sterilised raw banana prawn broth inoculated with a total of 15 cultures of Ps. fragi and S. putrefaciens and incubated for two weeks at 5°C, showed the presence of 17 major compounds in the headspace volatiles analysed using gas chromatography/mass spectrometry (GC/MS). These were mainly amines, sulphides, ketones and esters. Principal Component Analysis of the results for the comparative levels of the volatiles produced by pure cultures, inoculated into sterile prawn broth, indicated three subgroupings of the organisms; I, Ps. fragi from a particular geographic location; II, S. putrefaciens from another geographic location; and III, a mixture of Ps. fragi and S. putrefaciens from different geographic locations. The sensory impression created by the cultures was strongly related to the chemical profile as determined by GC/MS. Organisms, even within the same subgrouping classified as identical by the usual tests, produced a different range of volatiles in the same uniform substrate.
Resumo:
Volatile chemical compounds responsible for the aroma of wine are derived from a number of different biochemical and chemical pathways. These chemical compounds are formed during grape berry metabolism, crushing of the berries, fermentation processes (i.e. yeast and malolactic bacteria) and also from the ageing and storage of wine. Not surprisingly, there are a large number of chemical classes of compounds found in wine which are present at varying concentrations (ng L-1 to mg L-1), exhibit differing potencies, and have a broad range of volatilities and boiling points. The aim of this work was to investigate the potential use of near infrared (NIR) spectroscopy combined with chemometrics as a rapid and low-cost technique to measure volatile compounds in Riesling wines. Samples of commercial Riesling wine were analyzed using an NIR instrument and volatile compounds by gas chromatography (GC) coupled with selected ion monitoring mass spectrometry. Correlation between the NIR and GC data were developed using partial least-squares (PLS) regression with full cross validation (leave one out). Coefficients of determination in cross validation (R 2) and the standard error in cross validation (SECV) were 0.74 (SECV: 313.6 μg L−1) for esters, 0.90 (SECV: 20.9 μg L−1) for monoterpenes and 0.80 (SECV: 1658 ?g L-1) for short-chain fatty acids. This study has shown that volatile chemical compounds present in wine can be measured by NIR spectroscopy. Further development with larger data sets will be required to test the predictive ability of the NIR calibration models developed.