74 resultados para tree damage
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Wildfire represents a major risk to pine plantations. This risk is particularly great for young plantations (generally less than 10 m in height) where prescribed fire cannot be used to manipulate fuel biomass, and where flammable grasses are abundant in the understorey. We report results from a replicated field experiment designed to determine the effects of two rates of glyphosate (450 g L–1) application, two extents of application (inter-row only and inter-row and row) with applications being applied once or twice, on understorey fine fuel biomass, fuel structure and composition in south-east Queensland, Australia. Two herbicide applications (~9 months apart) were more effective than a once-off treatment for reducing standing biomass, grass continuity, grass height, percentage grass dry weight and the density of shrubs. In addition, the 6-L ha–1 rate of application was more effective than the 3-L ha–1 rate of application in periodically reducing grass continuity and shrub density in the inter-rows and in reducing standing biomass in the tree rows, and application in the inter-rows and rows significantly reduced shrub density relative to the inter-row-only application. Herbicide treatment in the inter-rows and rows is likely to be useful for managing fuels before prescribed fire in young pine plantations because such treatment minimised tree scorch height during prescribed burns. Further, herbicide treatments had no adverse effects on plantation trees, and in some cases tree growth was enhanced by treatments. However, the effectiveness of herbicide treatments in reducing the risk of tree damage or mortality under wildfire conditions remains untested.
Resumo:
Trials to identify alternative cropping options to Melaleuca alternifolia for northern Queensland essential oil growers were established at Dimbulah and Innot Hot Springs in 2001. Seed sources of Asteromyrtus symphyocarpa (1,8-cineole form), Eucalyptus staigeriana (citral), Melaleuca cajuputi subsp. cajuputi (trans-nerolidol), M. ericifolia (d-linalool), M. quinquenervia (trans-nerolidol and viridiflorol forms) and M. viridiflora (methyl cinnamate) with potential to produce commercial foliar oils were evaluated. Information was gathered on their adaptability, growth and oil yields over 49 months and 52 months (two harvests) from planting at Dimbulah and Innot Hot Springs, respectively. Of the species and chemotypes evaluated, M. quinquenervia showed potential for commercial production of trans-nerolidol, a compound used in perfumery. It had a very high survival rate (96%) and yields could be expected to improve dramatically from the average 100 kg/ha per harvest achieved in these trials with further research into selection of seed source, control of insect damage and breeding for genetic improvement. M. cajuputi subsp. cajuputi gave a similar performance to M. quinquenervia. The rarity of the trans-nerolidol form of this species and remoteness of its natural occurrence are impediments to further planting and research. E. staigeriana, with second harvest yields of ~600 kg/ha, performed exceptionally well on both sites but potential for development is limited by the ready availability of competitively priced E. staigeriana oil produced in South America. Survival of M. ericifolia ranged from 62% to 82% at 32 months (second harvest) at Innot Hot Springs and was deemed a failure at Dimbulah with poor growth and low survival, raising a major question about the suitability of this species for cultivation in the seasonally dry tropics. Planting of this species on a wider scale in northern Queensland cannot be recommended until more is known about factors affecting its survival. A. symphyocarpa and M. viridiflora were too slow-growing to warrant further consideration as potential oil-producing species at this time.
Resumo:
Mangoes can express several skin disorders following important postharvest treatments. Responses are often cultivar specific. This paper reports the responses of two new Australian mango cultivars to some of these treatments. 'Honey Gold' mango develops "under skin browning" early during cold storage. This is thought to be partly caused by a discolouration of the latex vessels which then spreads to the surrounding cells. The symptoms appear to be worse in fruit from hotter production areas and that have been cooled to temperatures below 18C soon after harvest. Current commercial recommendations are to cool fruit to 18C, which limits postharvest handling options. Recent trials have confirmed that delayed or slowed cooling after harvest can reduce under skin browning. The defect may also be associated with physical injury to the skin during harvesting and packing. Irradiation is potentially an important disinfestation treatment for fruit fly in Australian mangoes. The 'B74' mango cultivar develops significant skin damage following irradiation, mainly due to discolouration of the cells surrounding the lenticels. Recent results confirmed that fruit harvested directly from the tree into trays without exposure to water or postharvest chemicals are not damaged by irradiation, while commercially harvested and packed fruit are damaged. Several major harvest and postharvest steps appear to increase lenticel sensitivity to irradiation. Further work is required to develop commercially acceptable protocols to facilitate 'Honey Gold' and 'B74' mango distribution and marketing.
Resumo:
The Forest health guide: symptoms of insect and fungal damage on trees is intended to help forestry and quarantine staff undertake tree health assessments, in both forest and urban environments. The guide is designed to be used as a quick reference to common symptoms of damage, not as an identification guide to particular insect pests and pathogens.
Resumo:
The in vivo pediculicidal effectiveness of 1% and 2% formulations of tea tree (Melaleuca alternifolia) oil (TTO) against sheep chewing lice (Bovicola ovis) was tested in two pen studies. Immersion dipping of sheep shorn two weeks before treatment in both 1% and 2% formulations reduced lice to non detectable levels. No lice were found on any of the treated sheep despite careful inspection of at least 40 fleece partings per animal at 2, 6, 12 and 20 weeks after treatment. In the untreated sheep louse numbers increased from a mean (+/- SE) of 2.4 (+/- 0.7) per 10 cm fleece part at 2 weeks to 12.3 (+/- 4.2) per part at 20 weeks. Treatment of sheep with 6 months wool by jetting (high pressure spraying into the fleece) reduced louse numbers by 94% in comparison to controls at two weeks after treatment with both 1% and 2% TTO formulations. At 6 and 12 weeks after treatment reductions were 94% and 91% respectively with the 1% formulation and 78% and 84% respectively with the 2% formulation. TTO treatment also appeared to reduce wool damage in infested sheep. Laboratory studies indicated that tea tree oil 'stripped' from solution with a progressive reduction in concentration as well as volume as more wool was dipped, indicating that reinforcement of active ingredient would be required to maintain effectiveness when large numbers of sheep are treated. The results of these studies suggest significant potential for the development of ovine lousicides incorporating TTO. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.
Resumo:
A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.
Resumo:
The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95 of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects.
Resumo:
Traps baited with synthetic aggregation pheromone and fermenting bread dough were used to monitor seasonal incidence and abundance of the ripening fruit pests, Carpophilus hemipterus (L.), C. mutilatus Erichson and C. davidsoni Dobson in stone fruit orchards in the Leeton district of southern New South Wales during five seasons (1991-96). Adult beetles were trapped from September-May, but abundance varied considerably between years with the amount of rainfall in December-January having a major influence on population size and damage potential during the canning peach harvest (late February-March). Below average rainfall in December-January was associated with mean trap catches of < 10 beetles/trap/week in low dose pheromone traps during the harvest period in 1991/92 and 1993/94 and no reported damage to ripening fruit. Rainfall in December-January 1992/93 was more than double the average and mean trap catches ranged from 8-27 beetles/week during the harvest period with substantial damage to the peach crop. December-January rainfall was also above average in 1994/95 and 1995/96 and means of 50-300 beetles/trap/week were recorded in high dose pheromone traps during harvest periods. Carpophilus spp. caused economic damage to peach crops in both seasons. These data indicate that it may be possible to predict the likelihood of Carpophilus beetle damage to ripening stone fruit in inland areas of southern Australia, by routine pheromone-based monitoring of beetle populations and summer temperatures and rainfall.
Resumo:
A survey for mycotoxins and fungal damage in maize (Zea mays L.) grown during 1982 in Far North Queensland is reported. This season had a rainfall distribution which was typical for the reglon. The 293 samples examined came from 11 1 farms in eight maize-growing districts. The samples were first subjected to rapid screening tests for fungal damage. Aflatoxins B1, B2, G1, G2 ochratoxin A, T-2 toxin, and sterigmatocystin were not detected, but zearalenone was found in 85% of the samples. The concentrations of zearalenone were correlated with the extent of Gibberella zeae cob rot as indicated by the proportion (up to 2%) of kernels in each sample having a reddish-purple discoloration. In four samples the zearalenone concentration exceeded 1 mg kg-1, but the mean ¦ s.d. (n = 293) concentration in all samples was 0.17 ¦ 0.225 mg kg-1. Concentrations were highest in districts with the highest rainfall during the period of maize growth.
Resumo:
Different degrees of severity of threshing were imposed during combine-harvesting of seed of Gatton panic, a cultivar of Panicum maximum , to determine effects of degree of threshing damage on subsequent properties of seed. Threshing cylinder peripheral speeds and concave clearances covering the normal range employed commercially were varied experimentally in the harvest of 2 crops grown in north Queensland. Harvested seed was dried and cleaned, then stored under ambient conditions. The extent of physical damage was measured, and samples were tested at intervals for viability, germination, dormancy and seedling emergence from soil in a glasshouse and in the field over the 2 seasons following harvest. Physical damage increased as peripheral rotor speed rose and (though less markedly) as concave clearance was reduced. As the level of damage increased, viability was progressively reduced, life expectancy was shortened, and dormancy was broken. When the consequences were measured as seedling emergence from soil, the adverse effects on viability tended to cancel out the benefits of dormancy-breaking, leaving few net differences attributable to the degree of threshing severity. We concluded that there would be no value in trying to manipulate the quality of seed produced for normal commercial use through choice of cylinder settings, but that deliberate light or heavy threshing could benefit special-purpose seed, destined, respectively, for long-term storage or immediate use.
Resumo:
The damage potential of two phytophagous scarab larvae on groundnut (peanut) yield was determined. Holotrichia serrata, a root and pod feeding species from southern India, was studied in microplots while the damage potential of Heteronyx piceus, a pod feeder from Queensland, Australia, was determined by analysis of on-farm chemical-rate trials. H. serrata larva reduced groundnut yield by an average of 7.52 g/ larva. In crops yielding less and more than 1900 kg ha-1, H. piceus reduced yield by 4.20 g and 1.43 g/ larva, respectively. These damage potential estimates were used to determine provisional economic injury levels (EIL). For H. piceus, the provisional EIL is 1.67 and 4.91 larvae/ row-metre in crops yielding less and more than 1900 kg/ha, respectively. For H. serrata, the provisional EIL is one H. serrata larva in 7.1 m2. As more than 70% of southern India groundnut fields have Holotrichia populations greater than 1 larva in 1.35 m2, more widespread use of chlorpyrifos seed dressing of groundnut is likely to produce regional economic benefits.
Resumo:
Results from the humid tropics of Australia demonstrate that diverse plantations can achieve greater productivity than monocultures. We found that increases in both the observed species number and the effective species richness were significantly related to increased levels of productivity as measured by stand basal area or mean individual tree basal area. Four of five plantation species were more productive in mixtures with other species than in monocultures, offering on average, a 55% increase in mean tree basal area. A general linear model suggests that species richness had a significant effect on mean individual tree basal area when environmental variables were included in the model. As monoculture plantations are currently the preferred reforestation method throughout the tropics these results suggest that significant productivity and ecological gains could be made if multi-species plantations are more broadly pursued.
Resumo:
The seed-feeding jewel bug, Agonosoma trilineatum (F.), is an introduced biological control agent for bellyache bush, Jatropha gossypiifolia L. To quantify the damage potential of this agent, shadehouse experiments were conducted with individual bellyache bush plants exposed to a range of jewel bug densities (0, 6 or 24 jewel bugs/plant). The level of abortion of both immature and mature seed capsules and impacts on seed weight and seed viability were recorded in an initial short-term study. The ability of the jewel bug to survive and cause sustained damage was then investigated by measuring seed production, the survival of adults and nymph density across three 6-month cycles. The level of seed capsule abortion caused by the jewel bug was significantly affected by the maturity status of capsules and the density of insects present. Immature capsules were most susceptible and capsule abortion increased with jewel bug density. Similarly, on average, the insects reduced the viability of bellyache bush seeds by 79% and 89% at low and high densities, respectively. However, sustaining jewel bug populations for prolonged periods proved difficult. Adult survival at the end of three 6-month cycles averaged 11% and associated reductions in viable seed production ranged between 55% and 77%. These results suggest that the jewel bug has the potential to reduce the number of viable seeds entering the soil seed bank provided populations can be established and maintained at sufficiently high densities.
Resumo:
This study investigated whether mixed-species designs can increase the growth of a tropical eucalypt when compared to monocultures. Monocultures of Eucalyptus pellita (E) and Acacia peregrina (A) and mixtures in various proportions (75E:25A, 50E:50A, 25E:75A) were planted in a replacement series design on the Atherton Tablelands of north Queensland, Australia. High mortality in the establishment phase due to repeated damage by tropical cyclones altered the trial design. Effects of experimental designs on tree growth were estimated using a linear mixed-effects model with restricted maximum likelihood analysis (REML). Volume growth of individual eucalypt trees were positively affected by the presence of acacia trees at age 5 years and this effect generally increased with time up to age 10 years. However, the stand volume and basal area increased with increasing proportions of E. pellita, due to its larger individual tree size. Conventional analysis did not offer convincing support for mixed-species designs. Preliminary individual-based modelling using a modified Hegyi competition index offered a solution and an equation that indicates acacias have positive ecological interactions (facilitation or competitive reduction) and definitely do not cause competition like a eucalypt. These results suggest that significantly increased in growth rates could be achieved with mixed-species designs. This statistical methodology could enable a better understanding of species interactions in similarly altered experiments, or undesigned mixed-species plantations.