35 resultados para transformation temperature
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Species of Liposcelis psocids have emerged as major pests of stored grain in Australia in recent years. Several populations have been detected with high resistance to phosphine, the major chemical treatment. Highest resistance has been detected in the cosmopolitan species Liposcelis bostrychophila. As part of a national resistance management strategy to maintain the viability of phosphine, we are developing minimum effective dosage regimes (concentration x time) required to control all life stages of resistant L. bostrychophila at a range of grain temperatures. Four concentrations of phosphine, 0.1, 0.17, 0.3 aid 1 mg/L, were evaluated for their effectiveness against strongly resistant L. bostrychophila at a series of fumigation temperatures: 20, 25, 30 and 35°C. Results were recorded as the least number of days taken to achieve population extinction. We found that, at any fixed concentration of phosphine, time to population extinction decreased as fumigation temperature increased from 20 to 30°C. For example, at 0.1 mg/L, it took more than 14 days at 20°C to completely control these insects, whereas at 30°C it took only seven days. Increase in fumigation temperature from 25OC to 30°C dramatically reduced the exposure period needed to achieve population extinction of resistant psocids. For example, a dose of 0.17 mg/L over six days at 30°C completely controlled strongly resistant L. bostrychophila populations that can survive at 1 mg/L and 25°C over the same exposure period. Findings from our study will be used to formulate recommendations for registered dosage rates and fumigation periods for use in Australia.
Resumo:
In order to develop an efficient and reliable biolistics transformation system for pineapples parameters need to be optimised for growth, survival and development of explants pre- and post transformation. We have optimised in vitro conditions for culture media for the various stages of plant and callus initiation and development, and for effective selection of putative transgenic material. Shoot multiplication and proliferation is best on medium containing MS basic nutrients and vitamins with the addition of 0.1 mg/L myo-inositol, 20 g/L sucrose, 2.5 mg/L BAP and 3 g/L Phytagel, followed by transfer to basic MS medium for further development. Callus production on leaf base explants is best on MS nutrients and vitamins, to which 10 mg/L of BAP and NAA each was added. Optimum explant age for bombardment is 17-35 week old callus, while a pre-bombardment osmoticum treatment in the medium is not required. By comparing several antibiotics as selective agent, it has been established that a two-step selection of 2 fortnightly sub-cultures on 50 μg/mL of geneticin in the culture medium, followed by monthly sub-cultures on 100 μg/mL geneticin is optimal for survival of transgenic callus. Shoot regeneration from callus cultures is optimal on medium containing MS nutrients and vitamins, 5% coconut water and 400 mg/L casein hydrolysate. Plants can be readily regenerated and multiplied from transgenic callus through organogenesis. Rooting of shoots does not require any additional plant hormones to the medium. A transformation efficiency of 1 – 3.5% can be achieved, depending on the gene construct applied.
Resumo:
Techniques for the introduction of transgenes to control blackheart by particle bombardment and Agrobacterium co-transformation have been developed for pineapple cv. Smooth Cayenne. Polyphenol oxidase (PPO) is the enzyme responsible for blackheart development in pineapple fruit following chilling injury. Sense, anti-sense and hairpin constructs were used as a means to suppress PPO expression in plants. Average transformation efficiency for biolistics was approximately 1% and for Agrobacterium was approximately 1.5%. These results were considered acceptable given the high regeneration potential of between 80-90% from callus cultures. Southern blot analysis revealed stable integration of transgenes with lower copy number found in plants transformed with Agrobacterium compared to those transformed by biolistics. Over 5000 plants from 55 transgenic lines are now undergoing field evaluation in Australia
Resumo:
The current study was undertaken to enumerate Gram-positive bacteria in fresh sub-tropical marine fish and determine the effect of ambient storage (25°C) on the Gram-positive bacterial count. Total and Gram-positive bacteria were enumerated in the muscles, gills and gut of fresh and stored Pseudocaranx dentex, Pagrus auratus and Mugil cephalus on tryptone soya agar (TSA) and TSA with 0.25% phenylethyl alcohol (PEA), respectively. Initial studies indicated that PEA significantly reduced total aerobic bacterial count (TABC) whereas control Gram-positive bacteria were not affected by 0.25% PEA. TABC significantly increased in all fish body parts, whereas Gram-positive aerobic bacterial count (GABC) significantly increased only in the muscles and gills during ambient storage for 15 h. The TABC of the fish species increased from 4.00, 6.13 and 4.58 log cfu g-1, respectively in the muscles, gills, and gut to 6.31, 7.31 and 7.23 log cfu g-1 by the end of storage. GABC increased from 2.00, 3.52 and 2.20 log cfu g-1 to 4.70, 5.85 and 3.36 log cfu g-1. Within each species, TABC were significantly higher in the gills compared to that of muscles and gut; however, no significant differences were found in GABC between muscles and gills. This study demonstrated the potential importance of Gram-positive bacteria in sub-tropical marine fish and their spoilage.
Resumo:
This study uses chlorophyll a fluorescence to examine the effect of environmentally relevant (1-4 h) exposures of thermal stress (35-45 [deg]C) on seagrass photosynthetic yield in seven tropical species of seagrasses. Acute response of each tropical seagrass species to thermal stress was characterised, and the capacity of each species to tolerate and recover from thermal stress was assessed. Two fundamental characteristics of heat stress were observed. The first effect was a decrease in photosynthetic yield (Fv / Fm) characterised by reductions in F and Fm'. The dramatic decline in Fv / Fm ratio, due to chronic inhibition of photosynthesis, indicates an intolerance of Halophila ovalis, Zostera capricorni and Syringodium isoetifolium to ecologically relevant exposures of thermal stress and structural alterations to the PhotoSystem II (PSII) reaction centres. The decline in Fm' represents heat-induced photoinhibition related to closure of PSII reaction centres and chloroplast dysfunction. The key finding was that Cymodocea rotundata, Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were more tolerant to thermal stress than H. ovalis, Z. capricorni and S. isoetifolium. After 3 days of 4 h temperature treatments ranging from 25 to 40 [deg]C, C. rotundata, C. serrulata and H. uninervis demonstrated a wide tolerance to temperature with no detrimental effect on Fv / Fm' qN or qP responses. These three species are restricted to subtropical and tropical waters and their tolerance to seawater temperatures up to 40 [deg]C is likely to be an adaptive response to high temperatures commonly occurring at low tides and peak solar irradiance. The results of temperature experiments suggest that the photosynthetic condition of all seagrass species tested are likely to suffer irreparable effects from short-term or episodic changes in seawater temperatures as high as 40-45 [deg]C. Acute stress responses of seagrasses to elevated seawater temperatures are consistent with observed reductions in above-ground biomass during a recent El Nino event.
Resumo:
Prediction of the initiation, appearance and emergence of leaves is critically important to the success of simulation models of crop canopy development and some aspects of crop ontogeny. Data on leaf number and crop ontogeny were collected on five cultivars of maize differing widely in maturity and genetic background grown under natural and extended photoperiods, and planted on seven sowing dates from October 1993 to March 1994 at Gatton, South-east Queensland. The same temperature coefficients were established for crop ontogeny before silking, and the rates of leaf initiation, leaf tip appearance and full leaf expansion, the base, optimum and maximum temperatures for each being 8, 34 and 40 degrees C. After silking, the base temperature for ontogeny was 0 degrees C, but the optimum and maximum temperatures remained unchanged. The rates of leaf initiation, appearance of leaf tips and full leaf expansion varied in a relatively narrow range across sowing times and photoperiod treatments, with average values of 0.040 leaves (degrees Cd)-1, 0.021 leaves (degrees Cd)-1, and 0.019 leaves (degrees Cd)-1, respectively. The relationships developed in this study provided satisfactory predictions of leaf number and crop ontogeny (tassel initiation to silking, emergence to silking and silking to physiological maturity) when assessed using independent data from Gatton (South eastern Queensland), Katherine and Douglas Daly (Northern Territory), Walkamin (North Queensland) and Kununurra (Western Australia).
Resumo:
Previous research on P leaf analysis for detecting deficiencies in cotton (Gossypium hirsutum L.) has not considered temperature as a determining factor. This is despite correlations between leaf P content and temperature being observed in other crops. As part of research into a new cotton farming system for the semi-arid tropics of Australia, we conducted two P fertiliser rate experiments on recently cleared un-cropped (bicarbonate P < 5 mg kg- 1) and previously cropped (bicarbonate P 26 mg kg- 1) soil. They aimed to develop P requirements and more importantly to determine if temperature affects the leaf P concentrations used to diagnose P deficiencies. In 2002, optimal yield on un-cropped, low P soil was achieved with a 60 kg P ha- 1 rate. In 2003, residual P from the 40 kg P ha- 1 treatment produced optimal yield. On cropped, high P soil there was no yield response to treatments up to 100 kg P ha- 1. On low P soil, a positive correlation was observed between P concentration in the youngest fully-unfurled leaf (YFUL), fertiliser rate, and mean diurnal temperature in the seven days prior to sampling. On high P soil, a positive correlation was observed between the YFUL and mean diurnal temperature however there was no correlation with fertiliser rate. These results show that YFUL analysis can be used to diagnose P deficiencies in cotton, provided the temperature prior to sampling is considered.
Resumo:
The first larval instar has been identified as a critical stage for population mortality in Lepidoptera, yet due to the body size of these larvae, the factors that contribute to mortality under field conditions are still not clear. Dispersal behaviour has been suggested as a significant, but ignored factor contributing to mortality in first-instar lepidopteran larvae. The impact that leaving the host plant has on the mortality rate of Helicoverpa armigera neonates was examined in field crops and laboratory trials. In this study the following are examined: (1) the effects of soil surface temperature, and the level of shade within the crop, on the mortality of neonates on the soil after dropping off from the host plant; (2) the percentage of neonates that dropped off from a host plant and landed on the soil; and (3) the effects of exposure to different soil surface temperatures on the development and mortality of neonates. The findings of this study showed that: (1) on the soil, surface temperatures above 43°C were lethal for neonates, and exposure to these temperatures contributed greatly to the overall mortality rate observed; however, the fate of neonates on the soil varied significantly depending on canopy closure within the crop; (2) at least 15% of neonates dropped off from the host plant and landed on the soil, meaning that the proportion of neonates exposed to these condition is not trivial; and (3) 30 min exposure to soil surface temperatures approaching the lethal level (>43°C) has no significant negative effects on the development and mortality of larvae through to the second instar. Overall leaving the plant through drop-off contributes to first-instar mortality in crops with open canopies; however, survival of neonates that have lost contact with a host plant is possible, and becomes more likely later in the crop growing season.
Resumo:
BACKGROUND: The psocid Liposcelis bostrychophila Badonnel, is a widespread, significant pest of stored commodities, has developed strong resistance to phosphine, the major grain disinfestant. The aim was to develop effective fumigation protocols to control this resistant pest. RESULTS: Time to population extinction of all life stages (TPE) in days was evaluated at a series of phosphine concentrations and temperatures at two relative humidities. Regression analysis showed that temperature, concentration and relative humidity all contributed significantly to describing TPE (P < 0.001, R2 = 0.95), with temperature being the dominant variable, accounting for 74.4% of the variation. Irrespective of phosphine concentration, TPE was longer at lower temperatures and high humidity (70% RH) and shorter at higher temperatures and low humidity (55% RH). At any concentration of phosphine, a combination of higher temperature and lower humidity provides the shortest fumigation period to control resistant L. bostrychophila. For example, 19 and 11 days of fumigation are required at 15 °C and 70% RH at 0.1 and 1.0 mg L-1 of phosphine respectively, whereas only 4 and 2 days are required at 35 °C and 55% RH for the same respective concentrations. CONCLUSIONS: The developed fumigation protocols will provide industry with flexibility in application of phosphine.
Resumo:
Bigeyed bugs (Geocoris spp., Hemiptera: Geocoridae) are common predators in Australian agricultural crops yet the development and reproductive biology of Australian geocorids has not been described before. Here we present the effects of diet, temperature and photoperiod on the development and survival of Geocoris lubra Kirkaldy from egg to adult. Nymphal survival of G. lubra reared on live aphids (Aphis gossypii Glover) was very low but improved slightly on a diet of Helicoverpa armigera (Hübner) eggs. Development was faster and nymphal survival improved significantly at 27°C compared with 25°C. Further investigation at 27°C showed photoperiod influenced development time, but not survival of immature G. lubra. Development time was significantly longer at 10L:14D. Fecundity of first generation G. lubra was not affected by photoperiod, although egg viability was greater at 12L:12D.
Resumo:
The effect of temperature (5-85 °C) on the foaming properties of cows' milk was investigated. The foaming properties of milk as a function of temperature varied considerably depending on fat content and the processing conditions used in manufacture. Skim milk foams were most stable when formed at 45 °C. Milk fat had a detrimental effect on foam formation and stability of whole milk especially in the temperature range 15-45 °C. The detrimental effects of milk fat on foaming properties were reduced by homogenization and ultra-high-temperature (UHT) treatment. No correlation was observed between foam formation and surface tension of whole milk in the temperature range 15-45 °C. There was a pronounced difference in the bubble size distributions of whole milk and skim milk especially at half-life of the foams. Bubbles in whole milk foams were smaller and showed a higher degree of rupture as a result of coalescence than those in skim milk foams.
Resumo:
Measurement or accurate simulation of soil temperature is important for improved understanding and management of peanuts (Arachis hypogaea L.), due to their geocarpic habit. A module of the Agricultural Production Systems Simulator Model (APSIM), APSIM-soiltemp, which uses input of ambient temperature, rainfall and solar radiation in conjunction with other APSIM modules, was evaluated for its ability to simulate surface 5 cm soil temperature in 35 peanut on-farm trials conducted between 2001 and 2005 in the Burnett region (25°36'S to 26°41'S, 151°39'E to 151°53'E). Soil temperature simulated by the APSIM-soiltemp module, from 30 days after sowing until maturity, closely matched the measured values (R2 ≥ 0.80)in the first three seasons (2001-04). However, a slightly poorer relationship (R2 = 0.55) between the observed and the simulated temperatures was observed in 2004-05, when the crop was severely water stressed. Nevertheless, over all the four seasons, which were characterised by a range of ambient temperature, leaf area index, radiation and soil water, each of which was found to have significant effects on soil temperature, a close 1:1 relationship (R2 = 0.85) between measured and simulated soil temperatures was observed. Therefore, the pod zone soil temperature simulated by the module can be generally relied on in place of measured input of soil temperature in APSIM applications, such as quantifying climatic risk of aflatoxin accumulation.
Resumo:
A laboratory experiment compared germination of the invasive exotic grass Hymenachne amplexicaulis (Rudge) Nees and the native H. acutigluma (Steud.) Gilliland. Seeds of both species were exposed to combinations of light (constant dark, alternating dark/light or constant light), temperature (constant or alternating) and nitrate regimes (with or without the addition of KNO3). Three seed lots of H. amplexicaulis (fresh, two adn four months old) and one of H. acutigluma (fresh seed) were tested. A significant temperature x light x nitrate x seed lot interaction occured. At a constant temperature very few seeds of either H. amplexicaulis or H. acutigluma germinated, regardless of the light regime or addition of KNO3. Generally, maximum germination occurred under a combination of alternating temperature, the presence of light (either constant or alternating) and the addition of KNO3. The exception was four month stored H. amplexicaulis seed, which reached maximum germinaction without the need for KNO3. Fresh seed of both H. amplexicaulis and H. acutigluma exhibited similar germination requirements. These findings suggest that conditions that buffer seeds from light and/or temperature fluctuations could reduce germination and possibly extend the life of seed banks of both H. amplexicaulis and H. acutigluma. Conversely, for land managers trying to control the exotic H. amplexicaulis, activities that create more favourable conditions for germination may help deplete seed banks faster.
Resumo:
To investigate the effects of soil type on seed persistence in a manner that controlled for location and climate variables, three weed species—Gomphocarpus physocarpus (swan plant), Avena sterilis ssp. ludoviciana (wild oat) and Ligustrum lucidum (broadleaf privet)—were buried for 21 months in three contrasting soils at a single location. Soil type had a significant effect on seed persistence and seedling vigour, but soil water content and temperature varied between soils due to differences in physical and chemical properties. Warmer, wetter conditions favoured shorter persistence. A laboratory-based test was developed to accelerate the rate of seed ageing within soils, using controlled superoptimal temperature and moisture conditions (the soil-specific accelerated ageing test, SSAAT). The SSAAT demonstrated that soil type per se did not influence seed longevity. Moreover, the order in which seeds aged was the same whether aged in the field or SSAAT, with L. lucidum being shortest-lived and A. sterilis being longest-lived of the three species.
Resumo:
Time to first root in cuttings varies under different environmental conditions and understanding these differences is critical for optimizing propagation of commercial forestry species. Temperature environment (15, 25, 30 or 35 +/- A 2A degrees C) had no effect on the cellular stages in root formation of the Slash x Caribbean Pine hybrid over 16 weeks as determined by histology. Initially callus cells formed in the cortex, then tracheids developed and formed primordia leading to external roots. However, speed of development followed a growth curve with the fastest development occurring at 25A degrees C and slowest at 15A degrees C with rooting percentages at week 12 of 80 and 0% respectively. Cutting survival was good in the three cooler temperature regimes (> 80%) but reduced to 59% at 35A degrees C. Root formation appeared to be dependant on the initiation of tracheids because all un-rooted cuttings had callus tissue but no tracheids, irrespective of temperature treatment and clone.