2 resultados para traditional droop controller design

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point sources of wastewater pollution, including effluent from municipal sewage treatment plants and intensive livestock and processing industries, can contribute significantly to the degradation of receiving waters (Chambers et al. 1997; Productivity Commission 2004). This has led to increasingly stringent local wastewater discharge quotas (particularly regarding Nitrogen, Phosphorous and suspended solids), and many municipal authorities and industry managers are now faced with upgrading their existing treatment facilities in order to comply. However, with high construction, energy and maintenance expenses and increasing labour costs, traditional wastewater treatment systems are becoming an escalating financial burden for the communities and industries that operate them. This report was generated, in the first instance, for the Burdekin Shire Council to provide information on design aspects and parameters critical for developing duckweed-based wastewater treatment (DWT) in the Burdekin region. However, the information will be relevant to a range of wastewater sources throughout Queensland. This information has been collated from published literature and both overseas and local studies of pilot and full-scale DWT systems. This report also considers options to generate revenue from duckweed production (a significant feature of DWT), and provides specifications and component cost information (current at the time of publication) for a large-scale demonstration of an integrated DWT and fish production system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climatic variability in dryland production environments (E) generates variable yield and crop production risks. Optimal combinations of genotype (G) and management (M) depend strongly on E and thus vary among sites and seasons. Traditional crop improvement seeks broadly adapted genotypes to give best average performance under a standard management regime across the entire production region, with some subsequent manipulation of management regionally in response to average local environmental conditions. This process does not search the full spectrum of potential G × M × E combinations forming the adaptation landscape. Here we examine the potential value (relative to the conventional, broad adaptation approach) of exploiting specific adaptation arising from G × M × E. We present an in-silico analysis for sorghum production in Australia using the APSIM sorghum model. Crop design (G × M) is optimised for subsets of locations within the production region (specific adaptation) and is compared with the optimum G across all environments with locally modified M (broad adaptation). We find that geographic subregions that have frequencies of major environment types substantially different from that for the entire production region show greatest advantage for specific adaptation. Although the specific adaptation approach confers yield and production risk advantages at industry scale, even greater benefits should be achievable with better predictors of environment-type likelihood than that conferred by location alone.