2 resultados para time of application and nutrient leaf content
em eResearch Archive - Queensland Department of Agriculture
Resumo:
High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials. © 2015, The Author(s).
Resumo:
One of the loci responsible for strong phosphine resistance encodes dihydrolipoamide dehydrogenase (DLD). The strong co-incidence of enzyme complexes that contain DLD, and enzymes that require thiamine as a cofactor, motivated us to test whether the thiamine deficiency of polished white rice could influence the efficacy of phosphine fumigation against insect pests of stored grain. Three strains of Sitophilus oryzae (susceptible, weak and strong resistance) were cultured on white rice (thiamine deficient), brown rice or whole wheat. As thiamine is an essential nutrient, we firstly evaluated the effect of white rice on developmental rate and fecundity and found that both were detrimentally affected by this diet. The mean time to reach adult stage for the three strains ranged from 40 to 43 days on brown rice and 50–52 days on white rice. The mean number of offspring for the three strains ranged from 7.7 to 10.3 per female over a three day period on brown rice and 2.1 to 2.6 on white rice. Growth and reproduction on wheat was similar to that on brown rice except that the strongly resistant strain showed a tendency toward reduced fecundity on wheat. The susceptible strain exhibited a modest increase in tolerance to phosphine on white rice as expected if thiamine deficiency could mimic the effect of the dld resistance mutation at the rph2 locus. The strongly resistant strain did not respond to thiamine deficiency, but this was expected as these insects are already strongly resistant. We failed, however, to observe the expected synergistic increase in resistance due to combining thiamine deficiency with the weakly resistant strain. The lack of interaction between thiamine content of the diet and the resistance genotype in determining the phosphine resistance phenotype suggests that the mode of inhibition of the complexes is a critical determinant of resistance.