8 resultados para thermal and hydrothermal stability

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract It is widely considered that high pressure processing (HPP) results in better retention of micronutrients and phytochemicals compared to thermal pasteurization (TP), although some studies indicate that this may not be true in all cases. The aims of this study were (1) to objectively compare the effects of HPP under commercial processing conditions with thermal pasteurization (TP) on the stability of phenolic antioxidants in strawberries following processing and during storage and (2) to evaluate the influence of varietal differences and hence differences in biochemical composition of strawberries on the stability of phenolic antioxidants. Strawberry puree samples from cultivars Camarosa, Rubygem, and Festival were subjected to HPP (600 MPa/20 °C/5 min) and TP (88 °C/2 min). The activities of oxidative enzymes were evaluated before and after processing. Furthermore, the antioxidant capacity (total phenolic content (TPC), oxygen radical absorbance capacity (ORAC), and ferric reducing antioxidant power (FRAP)) and individual anthocyanins (by HPLC) were determined prior to and following processing and after three months of refrigerated storage (4 °C). Depending on the cultivar, HPP caused 15–38% and 20–33% inactivation of polyphenol oxidase and peroxidase, respectively, compared to almost complete inactivation of these enzymes by TP. Significant decreases (p < 0.05) in ORAC, FRAP, TPC and anthocyanin contents were observed during processing and storage of both HPP and TP samples. Anthocyanins were the most affected with only 19–25% retention after three months of refrigerated storage (4 °C). Slightly higher (p < 0.05) loss of TPC and antioxidant capacity were observed during storage of HPP samples compared to TP. Industrial Relevance: The results of the study demonstrated that both high pressure processing and thermal pasteurization result in high retention of phenolic phytochemicals in strawberry products. Under the conditions investigated, high pressure processing did not result in a better retention of phenolic phytochemicals compared to thermal pasteurization. In fact, a slightly higher loss of total polyphenol content and antioxidant capacity were observed during refrigerated storage of HPP processed samples. Our results showed that, high pressure processing may not always be a better alternative to thermal processing for strawberry puree processing if the main objective is better retention of phenolic antioxidants. However, it should be noted that other quality attributes such as sensory properties, where distinct advantages of HPP are expected, were outside the scope of this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project will provide information, germplasm, selection techniques and strategies for breeders to develop high-yielding stay-green wheat cultivars for Australian growers via a "three pronged" research strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project provided information, selection techniques and strategies to facilitate the development of high-yielding, stay-green wheat varieties for Australian growers through: a) Improved understanding of the relationships between seminal root traits and other root- and shoot-related traits in determining high-yielding, stay-green phenotypes. b). Molecular markers and rapid phenotypic screening methods that allow selection in breeding programs and identification of genetic regions controlling favourable traits. c). Identification of traits leading to high-yielding, stay-green phenotypes for particular target populations of environments using computer simulation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variable-rate technologies and site-specific crop nutrient management require real-time spatial information about the potential for response to in-season crop management interventions. Thermal and spectral properties of canopies can provide relevant information for non-destructive measurement of crop water and nitrogen stresses. In previous studies, foliage temperature was successfully estimated from canopy-scale (mixed foliage and soil) temperatures and the multispectral Canopy Chlorophyll Content Index (CCCI) was effective in measuring canopy-scale N status in rainfed wheat (Triticum aestivum L.) systems in Horsham, Victoria, Australia. In the present study, results showed that under irrigated wheat systems in Maricopa, Arizona, USA, the theoretical derivation of foliage temperature unmixing produced relationships similar to those in Horsham. Derivation of the CCCI led to an r2 relationship with chlorophyll a of 0.53 after Zadoks stage 43. This was later than the relationship (r2 = 0.68) developed for Horsham after Zadoks stage 33 but early enough to be used for potential mid-season N fertilizer recommendations. Additionally, ground-based hyperspectral data estimated plant N (g kg)1) in Horsham with an r2 = 0.86 but was confounded by water supply and N interactions. By combining canopy thermal and spectral properties, varying water and N status can potentially be identified eventually permitting targeted N applications to those parts of a field where N can be used most efficiently by the crop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a large gap between the refined approaches to characterise genotypes and the common use of location and season as a coarse surrogate for environmental characterisation of breeding trials. As a framework for breeding, the aim of this paper is quantifying the spatial and temporal patterns of thermal and water stress for field pea in Australia. We compiled a dataset for yield of the cv. Kaspa measured in 185 environments, and investigated the associations between yield and seasonal patterns of actual temperature and modelled water stress. Correlations between yield and temperature indicated two distinct stages. In the first stage, during crop establishment and canopy expansion before flowering, yield was positively associated with minimum temperature. Mean minimum temperature below similar to 7 degrees C suggests that crops were under suboptimal temperature for both canopy expansion and radiation-use efficiency during a significant part of this early growth period. In the second stage, during critical reproductive phases, grain yield was negatively associated with maximum temperature over 25 degrees C. Correlations between yield and modelled water supply/demand ratio showed a consistent pattern with three phases: no correlation at early stages of the growth cycle, a progressive increase in the association that peaked as the crop approached the flowering window, and a progressive decline at later reproductive stages. Using long-term weather records (1957-2010) and modelled water stress for 104 locations, we identified three major patterns of water deficit nation wide. Environment type 1 (ET1) represents the most favourable condition, with no stress during most of the pre-flowering phase and gradual development of mild stress after flowering. Type 2 is characterised by increasing water deficit between 400 degree-days before flowering and 200 degree-days after flowering and rainfall that relieves stress late in the season. Type 3 represents the more stressful condition with increasing water deficit between 400 degree-days before flowering and maturity. Across Australia, the frequency of occurrence was 24% for ET1, 32% for ET2 and 43% for ET3, highlighting the dominance of the most stressful condition. Actual yield averaged 2.2 t/ha for ET1, 1.9 t/ha for ET2 and 1.4 t/ha for ET3, and the frequency of each pattern varied substantially among locations. Shifting from a nominal (i.e. location and season) to a quantitative (i.e. stress type) characterisation of environments could help improving breeding efficiency of field pea in Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The persistence of 1080 in two commonly used fox baits, Foxoff ® and chicken wingettes, was assessed under different climatic and rainfall conditions in central-western New South Wales. The rate of 1080 degradation did not change significantly between the Central Tablelands and the relatively hotter and drier environment of the Western Slopes. Loss of 1080 from wingettes was independent of the rainfall and climate conditions, with wingettes remaining lethal to foxes for, on average, 0.9 weeks. Foxoff ® baits remained lethal for longer than wingettes under all tested conditions, although their rate of degradation increased generally with increasing rainfall. As a result, areas baited with Foxoff® will require longer withholding periods for working dogs than those baited with wingettes, especially during dry periods. Wingettes may have advantages for use in sensitive areas where long-term hazards from toxic baits are undesirable. We found significant variations in 1080 concentration in freshly prepared baits that may result in efficacy, non-target and regulatory concerns for baiting campaigns. As a result, the superior quality control and shelf-stability of manufactured Foxoff® may be important criteria for favouring its use over freshly prepared bait types. However, use strategies for any bait type must ensure that foxes consume lethal doses of 1080 to avoid potential problems such as the development of learned aversion to baits or pesticide resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of sown pastures as short-term rotations into the cropping systems of northern Australia has been slow. The inherent chemical fertility and physical stability of the predominant vertisol soils across the region enabled farmers to grow crops for decades without nitrogen fertiliser, and precluded the evolution of a crop–pasture rotation culture. However, as less fertile and less physically stable soils were cropped for extended periods, farmers began to use contemporary farming and sown pasture technologies to rebuild and maintain their soils. This has typically involved sowing long-term grass and grass–legume pastures on the more marginal cropping soils of the region. In partnership with the catchment management authority, the Queensland Murray–Darling Committee (QMDC) and Landcare, a pasture extension process using the LeyGrain™ package was implemented in 2006 within two Grain & Graze projects in the Maranoa-Balonne and Border Rivers catchments in southern inland Queensland. The specific objectives were to increase the area sown to high quality pasture and to gain production and environmental benefits (particularly groundcover) through improving the skills of producers in pasture species selection, their understanding and management of risk during pasture establishment, and in managing pastures and the feed base better. The catalyst for increasing pasture sowings was a QMDC subsidy scheme for increasing groundcover on old cropping land. In recognising a need to enhance pasture knowledge and skills to implement this scheme, the QMDC and Landcare producer groups sought the involvement of, and set specific targets for, the LeyGrain workshop process. This is a highly interactive action learning process that built on the existing knowledge and skills of the producers. Thirty-four workshops were held with more than 200 producers in 26 existing groups and with private agronomists. An evaluation process assessed the impact of the workshops on the learning and skill development by participants, their commitment to practice change, and their future intent to sow pastures. The results across both project catchments were highly correlated. There was strong agreement by producers (>90%) that the workshops had improved knowledge and skills regarding the adaptation of pasture species to soils and climates, enabling a better selection at the paddock level. Additional strong impacts were in changing the attitudes of producers to all aspects of pasture establishment, and the relative species composition of mixtures. Producers made a strong commitment to practice change, particularly in managing pasture as a specialist crop at establishment to minimise risk, and in the better selection and management of improved pasture species (particularly legumes and the use of fertiliser). Producers have made a commitment to increase pasture sowings by 80% in the next 5 years, with fourteen producers in one group alone having committed to sow an additional 4893 ha of pasture in 2007–08 under the QMDC subsidy scheme. The success of the project was attributed to the partnership between QMDC and Landcare groups who set individual workshop targets with LeyGrain presenters, the interactive engagement processes within the workshops themselves, and the follow-up provided by the LeyGrain team for on-farm activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperatures have increased and in-crop rainfall decreased over recent decades in many parts of the Australian wheat cropping region. With these trends set to continue or intensify, improving crop adaptation in the face of climate change is particularly urgent in this, already drought-prone, cropping region. Importantly, improved performance under water-limitation must be achieved while retaining yield potential during more favourable seasons. A multi-trait-based approach to improve wheat yield and yield stability in the face of water-limitation and heat has been instigated in northern Australia using novel phenotyping techniques and a nested association mapping (NAM) approach. An innovative laboratory technique allows rapid root trait screening of hundreds of lines. Using soil grown seedlings, the method offers significant advantages over many other lab-based techniques. Another recently developed method allows novel stay-green traits to be quantified objectively for hundreds of genotypes in standard field trial plots. Field trials in multiple locations and seasons allow evaluation of targeted trait values and identification of superior germplasm. Traits, including yield and yield components are measured for hundreds of NAM lines in rain fed environments under various levels of water-limitation. To rapidly generate lines of interest, the University of Queensland “speed breeding” method is being employed, allowing up to 7 plant generations per annum. A NAM population of over 1000 wheat recombinant inbred lines has been progressed to the F5 generation within 18 months. Genotyping the NAM lines with the genome-wide DArTseq molecular marker system provides up to 40,000 markers. They are now being used for association mapping to validate QTL previously identified in bi-parental populations and to identify novel QTL for stay-green and root traits. We believe that combining the latest techniques in physiology, phenotyping, genetics and breeding will increase genetic progress toward improved adaptation to water-limited environments.