7 resultados para temperature-based models
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Laboratory-based relationships that model the phytotoxicity of metals using soil properties have been developed. This paper presents the first field-based phytotoxicity relationships. Wheat(Triticum aestivum L) was grown at 11 Australian field sites at which soil was spiked with copper (Cu) and zinc (Zn) salts. Toxicity was measured as inhibition of plant growth at 8 weeks and grain yield at harvest. The added Cu and Zn EC10 values for both endpoints ranged from approximately 3 to 4760 mg/kg. There were no relationships between field-based 8-week biomass and grain yield toxicity values for either metal. Cu toxicity was best modelled using pH and organic carbon content while Zn toxicity was best modelled using pH and the cation exchange capacity. The best relationships estimated toxicity within a factor of two of measured values. Laboratory-based phytotoxicity relationships could not accurately predict field-based phytotoxicity responses.
Resumo:
In this article, we describe and compare two individual-based models constructed to investigate how genetic factors influence the development of phosphine resistance in lesser grain borer (R. dominica). One model is based on the simplifying assumption that resistance is conferred by alleles at a single locus, while the other is based on the more realistic assumption that resistance is conferred by alleles at two separate loci. We simulated the population dynamic of R. dominica in the absence of phosphine fumigation, and under high and low dose phosphine treatments, and found important differences between the predictions of the two models in all three cases. In the absence of fumigation, starting from the same initial frequencies of genotypes, the two models tended to different stable frequencies, although both reached Hardy-Weinberg equilibrium. The one-locus model exaggerated the equilibrium proportion of strongly resistant beetles by 3.6 times, compared to the aggregated predictions of the two-locus model. Under a low dose treatment the one-locus model overestimated the proportion of strongly resistant individuals within the population and underestimated the total population numbers compared to the two-locus model. These results show the importance of basing resistance evolution models on realistic genetics and that using oversimplified one-locus models to develop pest control strategies runs the risk of not correctly identifying tactics to minimise the incidence of pest infestation.
Resumo:
A novel methodology for describing genotype by environment interactions estimated from multi-environment field trials is described and an empirical example using an extensive trial network of eucalypts is presented. The network of experiments containing 65 eucalypts was established in 38 replicated field trials across the tropics and subtropics of eastern Australia, with a selection of well-tested species used to provide a more detailed examination of productivity differentials across environmental gradients. By focusing on changes in species’ productivity across environmental gradients, the results are applicable for all species established across the range of environments evaluated in the trial network and simultaneously classify species and environments so that results may be applied across the landscape. The methodology developed was able to explain most (93 %) of the variation in the selected species relative changes in productivity across the various environmental variables examined. Responses were primarily regulated by changes in variables related to water availability and secondarily by temperature related variables. Clustering and ordination can identify groups of species with similar physiological responses to environment and may also guide the parameterisation and calibration of process based models of plant growth. Ordination was particularly useful in the identification of species with distinct environmental response patterns that would be useful as probes for extracting more information from future trials.
Resumo:
This paper reports on the use of APSIM - Maize for retrospective analysis of performance of a high input, high yielding maize crop and analysis of predicted performance of maize grown with high inputs over the long-term (>100 years) for specified scenarios of environmental conditions (temperature and radiation) and agronomic inputs (sowing date, plant population, nitrogen fertiliser and irrigation) at Boort, Victoria, Australia. It uses a high yielding (17 400 kg/ha dry grain, 20 500 kg/ha at 15% water) commercial crop grown in 2004-05 as the basis of the study. Yield for the agronomic and environmental conditions of 2004-05 was predicted accurately, giving confidence that the model could be used for the detailed analyses undertaken. The analysis showed that the yield achieved was close to that possible with the conditions and agronomic inputs of 2004-05. Sowing dates during 21 September to 26 October had little effect on predicted yield, except when combined with reduced temperature. Single year and long-term analyses concluded that a higher plant population (11 plants/m2) is needed to optimise yield, but that slightly lower N and irrigation inputs are appropriate for the plant population used commercially (8.4 plants/m2). Also, compared with changes in agronomic inputs increases in temperature and/or radiation had relatively minor effects, except that reduced temperature reduces predicted yield substantially. This study provides an approach for the use of models for both retrospective analysis of crop performance and assessment of long-term variability of crop yield under a wide range of agronomic and environmental conditions.
Resumo:
To facilitate marketing and export, the Australian macadamia industry requires accurate crop forecasts. Each year, two levels of crop predictions are produced for this industry. The first is an overall longer-term forecast based on tree census data of growers in the Australian Macadamia Society (AMS). This data set currently accounts for around 70% of total production, and is supplemented by our best estimates of non-AMS orchards. Given these total tree numbers, average yields per tree are needed to complete the long-term forecasts. Yields from regional variety trials were initially used, but were found to be consistently higher than the average yields that growers were obtaining. Hence, a statistical model was developed using growers' historical yields, also taken from the AMS database. This model accounted for the effects of tree age, variety, year, region and tree spacing, and explained 65% of the total variation in the yield per tree data. The second level of crop prediction is an annual climate adjustment of these overall long-term estimates, taking into account the expected effects on production of the previous year's climate. This adjustment is based on relative historical yields, measured as the percentage deviance between expected and actual production. The dominant climatic variables are observed temperature, evaporation, solar radiation and modelled water stress. Initially, a number of alternate statistical models showed good agreement within the historical data, with jack-knife cross-validation R2 values of 96% or better. However, forecasts varied quite widely between these alternate models. Exploratory multivariate analyses and nearest-neighbour methods were used to investigate these differences. For 2001-2003, the overall forecasts were in the right direction (when compared with the long-term expected values), but were over-estimates. In 2004 the forecast was well under the observed production, and in 2005 the revised models produced a forecast within 5.1% of the actual production. Over the first five years of forecasting, the absolute deviance for the climate-adjustment models averaged 10.1%, just outside the targeted objective of 10%.
Resumo:
We compared daily net radiation (Rn) estimates from 19 methods with the ASCE-EWRI Rn estimates in two climates: Clay Center, Nebraska (sub-humid) and Davis, California (semi-arid) for the calendar year. The performances of all 20 methods, including the ASCE-EWRI Rn method, were then evaluated against Rn data measured over a non-stressed maize canopy during two growing seasons in 2005 and 2006 at Clay Center. Methods differ in terms of inputs, structure, and equation intricacy. Most methods differ in estimating the cloudiness factor, emissivity (e), and calculating net longwave radiation (Rnl). All methods use albedo (a) of 0.23 for a reference grass/alfalfa surface. When comparing the performance of all 20 Rn methods with measured Rn, we hypothesized that the a values for grass/alfalfa and non-stressed maize canopy were similar enough to only cause minor differences in Rn and grass- and alfalfa-reference evapotranspiration (ETo and ETr) estimates. The measured seasonal average a for the maize canopy was 0.19 in both years. Using a = 0.19 instead of a = 0.23 resulted in 6% overestimation of Rn. Using a = 0.19 instead of a = 0.23 for ETo and ETr estimations, the 6% difference in Rn translated to only 4% and 3% differences in ETo and ETr, respectively, supporting the validity of our hypothesis. Most methods had good correlations with the ASCE-EWRI Rn (r2 > 0.95). The root mean square difference (RMSD) was less than 2 MJ m-2 d-1 between 12 methods and the ASCE-EWRI Rn at Clay Center and between 14 methods and the ASCE-EWRI Rn at Davis. The performance of some methods showed variations between the two climates. In general, r2 values were higher for the semi-arid climate than for the sub-humid climate. Methods that use dynamic e as a function of mean air temperature performed better in both climates than those that calculate e using actual vapor pressure. The ASCE-EWRI-estimated Rn values had one of the best agreements with the measured Rn (r2 = 0.93, RMSD = 1.44 MJ m-2 d-1), and estimates were within 7% of the measured Rn. The Rn estimates from six methods, including the ASCE-EWRI, were not significantly different from measured Rn. Most methods underestimated measured Rn by 6% to 23%. Some of the differences between measured and estimated Rn were attributed to the poor estimation of Rnl. We conducted sensitivity analyses to evaluate the effect of Rnl on Rn, ETo, and ETr. The Rnl effect on Rn was linear and strong, but its effect on ETo and ETr was subsidiary. Results suggest that the Rn data measured over green vegetation (e.g., irrigated maize canopy) can be an alternative Rn data source for ET estimations when measured Rn data over the reference surface are not available. In the absence of measured Rn, another alternative would be using one of the Rn models that we analyzed when all the input variables are not available to solve the ASCE-EWRI Rn equation. Our results can be used to provide practical information on which method to select based on data availability for reliable estimates of daily Rn in climates similar to Clay Center and Davis.
Resumo:
We trace the evolution of the representation of management in cropping and grazing systems models, from fixed annual schedules of identical actions in single paddocks toward flexible scripts of rules. Attempts to define higher-level organizing concepts in management policies, and to analyse them to identify optimal plans, have focussed on questions relating to grazing management owing to its inherent complexity. “Rule templates” assist the re-use of complex management scripts by bundling commonly-used collections of rules with an interface through which key parameters can be input by a simulation builder. Standard issues relating to parameter estimation and uncertainty apply to management sub-models and need to be addressed. Techniques for embodying farmers' expectations and plans for the future within modelling analyses need to be further developed, especially better linking planning- and rule-based approaches to farm management and analysing the ways that managers can learn.