2 resultados para tíbia

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the past 15 years, surveys to identify virus diseases affecting cool-season food legume crops in Australia and 11 CWANA countries (Algeria, China, Egypt, Ethiopia, Lebanon, Morocco, Sudan, Syria, Tunisia, Uzbekistan and Yemen) were conducted. More than 20,000 samples were collected and tested for the presence of 14 legume viruses by the tissue-blot immunoassay (TBIA) using a battery of antibodies, including the following Luteovirus monoclonal antibodies (McAbs): a broad-spectrum legume Luteovirus (5G4), BLRV, BWYV, SbDV and CpCSV. A total of 195 Luteovirus samples were selected for further testing by RT-PCR using 7 primers (one is degenerate, and can detect a wide range of Luteoviridae virus species and the other six are species-specific primers) at the Virology Laboratory, QDAF, Australia, during 2014. A total of 145 DNA fragments (represented 105 isolates) were sequenced. The following viruses were characterized based on molecular analysis: BLRV from Lebanon, Morocco, Tunisia and Uzbekistan; SbDV from Australia, Syria and Uzbekistan; BWYV from Algeria, China, Ethiopia, Lebanon, Morocco, Sudan, Tunisia and Uzbekistan; CABYV from Algeria, Lebanon, Syria, Sudan and Uzbekistan; CpCSV from Algeria, Ethiopia, Lebanon, Morocco, Syria and Tunisia, and unknown Luteoviridae species from Algeria, Ethiopia, Morocco, Sudan, Uzbekistan and Yemen. This study has clearly shown that there are a number of Polerovirus species, in addition to BWYV, all can produce yellowing/stunting symptoms in pulses (e.g. CABYV, CpCSV, and other unknown Polerovirus species). Based on our knowledge this is the first report of CABYV affecting food legumes. Moreover, there was about 95% agreement between results obtained from serological analysis (TBIA) and molecular analysis for the detection of BLRV and SbDV. Whereas, TBIA results were not accurate when using CpCSV and BWYV McAbs . It seems that the McAbs for CpCSV and BWYV used in this study and those available worldwide, are not virus species specific. Both antibodies, reacted with other Polerovirus species (e.g. CABYV, and unknown Polerovirus). This highlights the need for more accurate characterization of existing antibodies and where necessary the development of better, virus-specific antibodies to enable their use for accurate diagnosis of Poleroviruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate identification of viruses is critical for resistance breeding and for development of management strategies. To this end, we are developing PCR diagnostics for the luteoviruses / poleroviruses that commonly affect chickpea and pulse crops in Australia. This is helping to overcome the shortfalls in virus identifications that often result from cross reactions of viruses to some antibodies. We compared these PCR tests with antibody based Tissue blot immune-assay (TBIA) in virus surveys of chickpea and pulse crops from eastern Australia. We used a multiplex PCR for Beet western yellows virus (BWYV), Bean leaf roll virus (BLRV), Phasey bean virus (PhBV – a new polerovirus species) and Soybean dwarf virus (SbDV) to investigate the importance of each virus and their host range from different locations. Important alternative hosts included Malva parviflora which was commonly found to be infected with BWYV from many locations and Medicago polymorpha was a host for BLRV, PhBV and SbDV. Using the virus species-specific PCR, 49 virus affected plants (mostly crop plants) from surveys in 2013 were screened, revealing the following infections; 38 SbDV, 5 PhBV, 3 BWYV, 2 BLRV and 1 mixed SbDV/BWYV. From the 45 samples that were not BWYV by PCR, 33 were false-positives in the BWYV TBIA. This demonstrates the BWYV antibody used was not useful for identifying BWYV and PCR indicated that SbDV was the dominant virus from the samples tested from the 2013 season. Preliminary results from the 2014 season indicate a significant change, with SbDV being only a minor component of the total virus population. Further work to clarify the Australian luteovirus complex through molecular techniques is in progress.