10 resultados para structural refinement
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The accurate assessment of trends in the woody structure of savannas has important implications for greenhouse accounting and land-use industries such as pastoralism. Two recent assessments of live woody biomass change from north-east Australian eucalypt woodland between the 1980s and 1990s present divergent results. The first estimate is derived from a network of permanent monitoring plots and the second from woody cover assessments from aerial photography. The differences between the studies are reviewed and include sample density, spatial scale and design. Further analyses targeting potential biases in the indirect aerial photography technique are conducted including a comparison of basal area estimates derived from 28 permanent monitoring sites with basal area estimates derived by the aerial photography technique. It is concluded that the effect of photo-scale; or the failure to include appropriate back-transformation of biomass estimates in the aerial photography study are not likely to have contributed significantly to the discrepancy. However, temporal changes in the structure of woodlands, for example, woodlands maturing from many smaller trees to fewer larger trees or seasonal changes, which affect the relationship between cover and basal area could impact on the detection of trends using the aerial photography technique. It is also possible that issues concerning photo-quality may bias assessments through time, and that the limited sample of the permanent monitoring network may inadequately represent change at regional scales
Resumo:
Parthenium hysterophorus L. (Asteraceae) is a weed of national significance in Australia. Among the several arthropod agents introduced into Australia to control populations of P. hysterophorus biologically, Epiblema strenuana Walker (Lepidoptera: Tortricidae) is the most widespread and abundant agent. By intercepting the normal transport mechanisms of P. hysterophorus, the larvae of E. strenuana drain nutrients, other metabolic products, and energy, and place the host plant under intense metabolic stress. In this study, determinations of total non-structural carbohydrates (TNC) levels and carbon and nitrogen isotope ratios of fixed products in different parts of the plant tissue, including the gall, have been made to establish the function of gall as a sink for the nutrients. Values of δ13C and δ15N in galls were significantly different than those in proximal and distal stems, whereas the TNC levels were insignificant, when measured in the total population of P. hysterophorus, regardless of plant age. However, carbon, nitrogen, and TNC signatures presented significant results, when assayed in different developmental stages of P. hysterophorus. Carbon isotope ratios in galls were consistently more negative than those from the compared plant organs. Nitrogen isotope ratios in galls, on the contrary, were either similar to or less negative than the compared plant organs, especially within a single host-plant stage population (i.e., either rosette, preflowering, or flowering stage). TNC levels varied within compared plant populations. The stem distal to the gall functioned more efficiently as a nodal channel than the stem proximal to the gall, especially in the translocation of nitrogenous nutrients. Our findings indicate that the gall induced by E. strenuana functions as a sink for the assayed nutrients, although some variations have been observed in the patterns of nutrient mobilization. By creating a sink for the nutrients in the gall, E. strenuana is able to place the overall plant metabolism under stress, and this ability indicates E. strenuana has the necessary potential for use as a biological-control agent.
Resumo:
This project was designed to provide the structural softwood processing industry with the basis for improved green and dry grading to allow maximise MGP grade yields, consistent product performance and reduced processing costs. To achieve this, advanced statistical techniques were used in conjunction with state-of-the-art property measurement systems. Specifically, the project aimed to make two significant steps forward for the Australian structural softwood industry: • assessment of technologies, both existing and novel, that may lead to selection of a consistent, reliable and accurate device for the log yard and green mill. The purpose is to more accurately identify and reject material that will not make a minimum grade of MGP10 downstream; • improved correlation of grading MOE and MOR parameters in the dry mill using new analytical methods and a combination of devices. The three populations tested were stiffness-limited radiata pine, strength-limited radiata pine and Caribbean pine. Resonance tests were conducted on logs prior to sawmilling, and on boards. Raw data from existing in-line systems were captured for the green and dry boards. The dataset was analysed using classical and advanced statistical tools to provide correlations between data sets and to develop efficient strength and stiffness prediction equations. Stiffness and strength prediction algorithms were developed from raw and combined parameters. Parameters were analysed for comparison of prediction capabilities using in-line parameters, off-line parameters and a combination of in-line and off-line parameters. The results show that acoustic resonance techniques have potential for log assessment, to sort for low stiffness and/or low strength, depending on the resource. From the log measurements, a strong correlation was found between the average static MOE of the dried boards within a log and the predicted value. These results have application in segregating logs into structural and non-structural uses. Some commercial technologies are already available for this application such as Hitman LG640. For green boards it was found that in-line and laboratory acoustic devices can provide a good prediction of dry static MOE and moderate prediction for MOR.There is high potential for segregating boards at this stage of processing. Grading after the log breakdown can improve significantly the effectiveness of the mill. Subsequently, reductions in non-structural volumes can be achieved. Depending on the resource it can be expected that a 5 to 8 % reduction in non structural boards won’t be dried with an associated saving of $70 to 85/m3. For dry boards, vibration and a standard Metriguard CLT/HCLT provided a similar level of prediction on stiffness limited resource. However, Metriguard provides a better strength prediction in strength limited resources (due to this equipment’s ability to measure local characteristics). The combination of grading equipment specifically for stiffness related predictors (Metriguard or vibration) with defect detection systems (optical or X-ray scanner) provides a higher level of prediction, especially for MOR. Several commercial technologies are already available for acoustic grading on board such those from Microtec, Luxscan, Falcon engineering or Dynalyse AB for example. Differing combinations of equipment, and their strategic location within the processing chain, can dramatically improve the efficiency of the mill, the level of which will vary depending of the resource. For example, an initial acoustic sorting on green boards combined with an optical scanner associated with an acoustic system for grading dry board can result in a large reduction of the proportion of low value low non-structural produced. The application of classical MLR on several predictors proved to be effective, in particular for MOR predictions. However, the usage of a modern statistics approach(chemometrics tools) such as PLS proved to be more efficient for improving the level of prediction. Compared to existing technologies, the results of the project indicate a good improvement potential for grading in the green mill, ahead of kiln drying and subsequent cost-adding processes. The next stage is the development and refinement of systems for this purpose.
Resumo:
Towards the Development of a Functional-Structural model for Macadamia.
Resumo:
Roundwood structures have always been used for temporary and low cost shelters and other fleeting structures. Novel concepts for the use of plantation hardwoods in roundwood form in construction were developed and circulated along with an electronic questionnaire to stakeholders representing growers, designers and users of hardwood. Responses indicate that there is a high level of interest in developing products from the emerging small roundwood resource and a detailed program of research was supported and recommended by the majority of participants in the survey. These results indicate a high level of support for further investigation into the use of plantation hardwood for roundwood components. Respondents representing a wide range of stakeholders have indicated that to gain benefit from a detailed project they would require solutions for connection systems and protection from pests and weathering, indications of cost and assurance of ongoing supply for niche applications, data for strength, acoustic dampening and thermal insulation properties, acceptance by regulatory authorities and training for on-site construction.
Resumo:
This study provides information about wood quality, structural properties, processing characterists and product suitability of wood harvested from fast-grown hardwood plantations. Wood quality attributes tested included density, extractive content, unit shrinkage, heartwood proportion and sapwood width. Structural properties tested included small clear and full section strength and stiffness, hardness, joint group, visual grade assessment and natural vibration-based grade assessment. The variation between the inner, intermediate and outer heartwood zones and the variation between provenances was also tested. Overall, the wood qualtiy attributes measured for 19 year-old E. cloeziana and 15 year-old E. pellita plantation material fall between those expected from the wood of mature, native forest trees and those found in younger plantation material of the same species.
Resumo:
Experiments were conducted to study the effect of time of digging and nursery-growing environment on the levels of non-structural carbohydrates in 'Festival' strawberry transplants (Fragaria xananassa) over 2 years in southeastern Queensland, Australia. We were interested in determining whether there was a strong relationship between the potential productivity of this material and reserves in the plants. First, bare-rooted plants were obtained from Stanthorpe in southern Queensland from early March to mid-April/late April. Second, bare-rooted plants were sourced from Stanthorpe (a warm-growing area) or from Toolangi in Victoria (a cool-growing area). In Year 1 of the experiments, the nursery material from the different treatments was grown at Nambour in southeastern Queensland and fruit yield determined. The total weight of nonstructural carbohydrates/plant increased as digging was delayed and was higher in the plants from Stanthorpe than the plants from Toolangi. Plants dug on 17 Mar. in Year 1 had higher weights of non-structural carbohydrates [292 mg/plant dry weight (DW)] than plants dug on 3 Mar. (224 mg/plant) and higher early yield to the end of June or to the end of July and higher total yield to mid-October adjusted by the length of the growing season for the different treatments. Plants dug on 1 Apr. (408 mg/plant) or on 13 Apr. (445 mg/plant) had higher reserves than the plants dug on 17 Mar. but lower yields. Only the differences in yields between the plants dug on 3 Mar. and 17 Mar. reflected the differences in carbohydrates. The stock from Stanthorpe had greater reserves (408 mg/plant) than the stock from Toolangi (306 mg/plant) but similar yields in Year 1 possibly because of poorer flowering in the nursery plants. It was concluded that carbohydrate reserves in transplants only partially reflect their productivity in this environment.
Resumo:
Australian utility pole network is aging and reaching its end of life, with 70% of the 5 million poles currently in-service nationally installed within the 20 years following the end of World War II. The estimated investment required for the replacement or remedial maintenance of the aging 3.5 millions poles is as high as 1.75 billion dollars. Additionally, an estimated 21,700 high-durability new poles are required each year, representing further investment of 13.5 million dollars per year. Yet, agreements which progressively phase out logging of native forests around Australia have been signed, giving the industry about 25 years to make the transition from Crown native forests to plantations and private forests. As utility poles were traditionally cut from native forest hardwood species, finding solutions to source new poles currently presents a challenge. This paper presents tests on Veneer Based Composite hardwood hollow utility poles manufactured from Gympie messmate (Eucalyptus cloeziana) plantation thinning. Small diameter poles of nominal 115 mm internal diameter and 15 mm wall-thickness were manufactured in two half-poles butt jointed together, using 9 veneers per halfpole. The poles were tested in bending and shear, and experimental test results are presented. The mechanical performance of the hollow poles is discussed and compared to hardwood poles cut from mature trees and of similar size. Future research and different options for improving the current concept are proposed in order to provide a more reliable and cost effective technical solution to the current shortage of utility poles. © RILEM 2014.
Resumo:
Climate change and on-going water policy reforms will likely contribute to on-farm and regional structural adjustment in Australia. This paper gathers empirical evidence of farm-level structural adjustments and integrates these with a regional equilibrium model to investigate sectoral and regional impacts of climate change and recent water use policy on rice industry. We find strong evidence of adjustments to the farming system, enabled by existing diversity in on-farm production. A further loss of water with additional pressures to adopt less intensive and larger-scale farming, will however reduce the net number of farm businesses, which may affect regional rice production. The results from a regional CGE model show impacts on the regional economy over and above the direct cost of the environmental water, although a net reduction in real economic output and real income is partially offset by gains in rest of the Australia through the reallocation or resources. There is some interest within the industry and from potential new corporate entrants in the relocation of some rice production to the north. However, strong government support would be crucial to implement such relocation.
Resumo:
In Australia, plantation forests have increased in area by around 50% in the last 10 years. While this expansion has seen a modest 8% increase for softwoods, hardwood plantations have dramatically increased by over 150%. Hardwood plantations grown for high quality sawn timber are slow to mature, with a crop rotation time potentially reaching 35 years. With this long lead-time, each year the risk from fire, pests and adverse weather events dramatically increases, while not translating into substantially higher financial returns to the grower. To justify continued expansion of Australia's current hardwood plantation estate, it is becoming necessary to develop higher value end-uses for both pulpwood and smaller 'sawlog' resources. The use of the low commercial value stems currently culled during thinning appears to be a necessary option to improve the industry profitability and win new markets. This paper provides background information on Australian forests and plantations and gives an overview of potential uses of Australian hardwood plantation thinning logs, as their mechanical properties. More specifically, this paper reports on the development of structural Veneer Based Composite (VBC) products from hardwood plantation thinning logs, taking advantage of a recent technology developed to optimise the processing of this resource. The process used to manufacture a range of hollow-form veneer laminated structural products is presented and the mechanical characteristics of these products are investigated in the companion paper. The market applications and future opportunities for the proposed products are also discussed, as potential benefits to the timber industry. © RILEM 2014.