1 resultado para state-space model
em eResearch Archive - Queensland Department of Agriculture
Filtro por publicador
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (10)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (27)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (23)
- Boston University Digital Common (7)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (105)
- CentAUR: Central Archive University of Reading - UK (90)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (31)
- Cochin University of Science & Technology (CUSAT), India (8)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (3)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (7)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (11)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Indian Institute of Science - Bangalore - Índia (91)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (11)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (6)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (8)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (22)
- Queensland University of Technology - ePrints Archive (89)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (25)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (75)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (29)
- Universidade Complutense de Madrid (4)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (9)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (5)
- University of Connecticut - USA (1)
- University of Michigan (12)
- University of Queensland eSpace - Australia (16)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
Resumo:
Site index prediction models are an important aid for forest management and planning activities. This paper introduces a multiple regression model for spatially mapping and comparing site indices for two Pinus species (Pinus elliottii Engelm. and Queensland hybrid, a P. elliottii x Pinus caribaea Morelet hybrid) based on independent variables derived from two major sources: g-ray spectrometry (potassium (K), thorium (Th), and uranium (U)) and a digital elevation model (elevation, slope, curvature, hillshade, flow accumulation, and distance to streams). In addition, interpolated rainfall was tested. Species were coded as a dichotomous dummy variable; interaction effects between species and the g-ray spectrometric and geomorphologic variables were considered. The model explained up to 60% of the variance of site index and the standard error of estimate was 1.9 m. Uranium, elevation, distance to streams, thorium, and flow accumulation significantly correlate to the spatial variation of the site index of both species, and hillshade, curvature, elevation and slope accounted for the extra variability of one species over the other. The predicted site indices varied between 20.0 and 27.3 m for P. elliottii, and between 23.1 and 33.1 m for Queensland hybrid; the advantage of Queensland hybrid over P. elliottii ranged from 1.8 to 6.8 m, with the mean at 4.0 m. This compartment-based prediction and comparison study provides not only an overview of forest productivity of the whole plantation area studied but also a management tool at compartment scale.