6 resultados para sovereign spreads

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Occurrence and Importance: Anthracnose is presently recognized as the most important field and post-harvest disease of mango worldwide (Ploetz and Prakasli, 1997). It is the major disease limiting fruit production in all countries where mangoes are grown, especially where high humidity prevails during the cropping season. The post-harvest phase is the most damaging and economically significant phase of the disease worldwide. It directly affects the marketable fruit rendering it worthless. This phase is directly linked to the field phase where initial infection usually starts on young twigs and leaves and spreads to the flowers, causing blossom blight and destroying the inflorescences and even preventing fruit set.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soft-leaf buffalo grass is increasing in popularity as an amenity turfgrass in Australia. This project was instigated to assess the adaptation of and establish management guidelines for its use in Australias vast array of growing environments. There is an extensive selection of soft-leaf buffalo grass cultivars throughout Australia and with the countrys changing climates from temperate in the south to tropical in the north not all cultivars are going to be adapted to all regions. The project evaluated 19 buffalo grass cultivars along with other warm-season grasses including green couch, kikuyu and sweet smother grass. The soft-leaf buffalo grasses were evaluated for their growth and adaptation in a number of regions throughout Australia including Western Australia, Victoria, ACT, NSW and Queensland. The growth habit of the individual cultivars was examined along with their level of shade tolerance, water use, herbicide tolerance, resistance to wear, response to nitrogen applications and growth potential in highly alkaline (pH) soils. The growth habit of the various cultivars currently commercially available in Australia differs considerably from the more robust type that spreads quicker and is thicker in appearance (Sir Walter, Kings Pride, Ned Kelly and Jabiru) to the dwarf types that are shorter and thinner in appearance (AusTine and AusDwarf). Soft-leaf buffalo grass types tested do not differ in water use when compared to old-style common buffalo grass. Thus, soft-leaf buffalo grasses, like other warm-season turfgrass species, are efficient in water use. These grasses also recover after periods of low water availability. Individual cultivar differences were not discernible. In high pH soils (i.e. on alkaline-side) some elements essential for plant growth (e.g. iron and manganese) may be deficient causing turfgrass to appear pale green, and visually unacceptable. When 14 soft-leaf buffalo grass genotypes were grown on a highly alkaline soil (pH 7.5-7.9), cultivars differed in leaf iron, but not in leaf manganese, concentrations. Nitrogen is critical to the production of quality turf. The methods for applying this essential element can be manipulated to minimise the maintenance inputs (mowing) during the peak growing period (summer). By applying the greatest proportion of the turfs total nitrogen requirements in early spring, peak summer growth can be reduced resulting in a corresponding reduction in mowing requirements. Soft-leaf buffalo grass cultivars are more shade and wear tolerant than other warm-season turfgrasses being used by homeowners. There are differences between the individual buffalo grass varieties however. The majority of types currently available would be classified as having moderate levels of shade tolerance and wear reasonably well with good recovery rates. The impact of wear in a shaded environment was not tested and there is a need to investigate this as this is a typical growing environment for many homeowners. The use of herbicides is required to maintain quality soft-leaf buffalo grass turf. The development of softer herbicides for other turfgrasses has seen an increase in their popularity. The buffalo grass cultivars currently available have shown varying levels of susceptibility to the chemicals tested. The majority of the cultivars evaluated have demonstrated low levels of phytotoxicity to the herbicides chlorsulfuron (Glean) and fluroxypyr (Starane and Comet). In general, soft leaf buffalo grasses are varied in their makeup and have demonstrated varying levels of tolerance/susceptibility/adaptation to the conditions they are grown under. Consequently, there is a need to choose the cultivar most suited to the environment it is expected to perform in and the management style it will be exposed to. Future work is required to assess how the structure of the different cultivars impacts on their capacity to tolerate wear, varying shade levels, water use and herbicide tolerance. The development of a growth model may provide the solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mangoes can express several skin disorders following important postharvest treatments. Responses are often cultivar specific. This paper reports the responses of two new Australian mango cultivars to some of these treatments. 'Honey Gold' mango develops "under skin browning" early during cold storage. This is thought to be partly caused by a discolouration of the latex vessels which then spreads to the surrounding cells. The symptoms appear to be worse in fruit from hotter production areas and that have been cooled to temperatures below 18C soon after harvest. Current commercial recommendations are to cool fruit to 18C, which limits postharvest handling options. Recent trials have confirmed that delayed or slowed cooling after harvest can reduce under skin browning. The defect may also be associated with physical injury to the skin during harvesting and packing. Irradiation is potentially an important disinfestation treatment for fruit fly in Australian mangoes. The 'B74' mango cultivar develops significant skin damage following irradiation, mainly due to discolouration of the cells surrounding the lenticels. Recent results confirmed that fruit harvested directly from the tree into trays without exposure to water or postharvest chemicals are not damaged by irradiation, while commercially harvested and packed fruit are damaged. Several major harvest and postharvest steps appear to increase lenticel sensitivity to irradiation. Further work is required to develop commercially acceptable protocols to facilitate 'Honey Gold' and 'B74' mango distribution and marketing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cabomba caroliniana is a submersed macrophyte that has become a serious invader. Cabomba predominantly spreads by stem fragments, in particular through unintentional transport on boat trailers ('hitch hiking'). Desiccation resistance affects the potential dispersal radius. Therefore, knowledge of maximum survival times allows predicting future dispersal. Experiments were conducted to assess desiccation resistance and survival ability of cabomba fragments under various environmental scenarios. Cabomba fragments were highly tolerant of desiccation. However, even relatively low wind speeds resulted in rapid mass loss, indicating a low survival rate of fragments exposed to air currents, such as fragments transported on a boat trailer. The experiments indicated that cabomba could survive at least 3 h of overland transport if exposed to wind. However, even small clumps of cabomba could potentially survive up to 42 h. Thus, targeting the transport of clumps of macrophytes should receive high priority in management. The high resilience of cabomba to desiccation demonstrates the risk of continuing spread. Because of the high probability of fragment viability on arrival, preventing fragment uptake on boat trailers is paramount to reduce the risk of further spread. These findings will assist improving models that predict the spread of aquatic invasive macrophytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cabomba caroliniana is a submersed macrophyte that has become a serious invader. Cabomba predominantly spreads by stem fragments, in particular through unintentional transport on boat trailers (‘hitch hiking’). Desiccation resistance affects the potential dispersal radius. Therefore, knowledge of maximum survival times allows predicting future dispersal. Experiments were conducted to assess desiccation resistance and survival ability of cabomba fragments under various environmental scenarios. Cabomba fragments were highly tolerant of desiccation. However, even relatively low wind speeds resulted in rapid mass loss, indicating a low survival rate of fragments exposed to air currents, such as fragments transported on a boat trailer. The experiments indicated that cabomba could survive at least 3 h of overland transport if exposed to wind. However, even small clumps of cabomba could potentially survive up to 42 h. Thus, targeting the transport of clumps of macrophytes should receive high priority in management. The high resilience of cabomba to desiccation demonstrates the risk of continuing spread. Because of the high probability of fragment viability on arrival, preventing fragment uptake on boat trailers is paramount to reduce the risk of further spread. These findings will assist improving models that predict the spread of aquatic invasive macrophytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cabomba caroliniana is a submersed macrophyte that has become a serious invader. Cabomba predominantly spreads by stem fragments, in particular through unintentional transport on boat trailers ('hitch hiking'). Desiccation resistance affects the potential dispersal radius. Therefore, knowledge of maximum survival times allows predicting future dispersal. Experiments were conducted to assess desiccation resistance and survival ability of cabomba fragments under various environmental scenarios. Cabomba fragments were highly tolerant of desiccation. However, even relatively low wind speeds resulted in rapid mass loss, indicating a low survival rate of fragments exposed to air currents, such as fragments transported on a boat trailer. The experiments indicated that cabomba could survive at least 3 h of overland transport if exposed to wind. However, even small clumps of cabomba could potentially survive up to 42 h. Thus, targeting the transport of clumps of macrophytes should receive high priority in management. The high resilience of cabomba to desiccation demonstrates the risk of continuing spread. Because of the high probability of fragment viability on arrival, preventing fragment uptake on boat trailers is paramount to reduce the risk of further spread. These findings will assist improving models that predict the spread of aquatic invasive macrophytes.