2 resultados para sound art and architecture
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Recirculating aquaculture systems have a unique anthropogenic-based soundscape which is characterized by the type of equipment utilized, the structural configuration of walls, tanks, equipment, the substrate the tanks are situated on and even the activities of the personnel operating the facility. The soundscape of recirculation facilities is inadequately understood and remains poorly characterized, although it is generally accepted that the dominant sounds found in such facilities are within the hearing range of fish. The objective of this study was to evaluate the soundscape in a recirculating aquaculture facility from an intra-tank perspective and determine how the soundscape is shaped by a range of characteristics within the facility. Sounds were recorded across an operating aquaculture facility including different tank designs. The sounds recorded fell within previously measured pressure level ranges for recirculating systems, with the highest maximum sound pressure level (SPL) recorded at 124 dB re 1 mu Pa-2/Hz (with an FFT bin width of 46.9 Hz, centered at 187.5 Hz). The soundscape within the tanks was stratified and positively correlated with depth, the highest sound pressure occurring at the base of the tanks. Each recording of the soundscape was dominated by a frequency component of 187.5 Hz (corresponding centre of the 4th 46.9 Hz FFT analysis bin) that produced the highest observed SPL Analysis of sound recordings revealed that this peak SPL was associated with the acoustic signature of the pump. The soundscape was also evaluated for impacts of tank hood position, time of day, transient sounds and airstone particle size types, all of which were found to appreciably influence sound levels and structure within the tank environment. This study further discusses the distinctiveness of the soundscape, how it is shaped by the various operating components and considers the aquaculture soundscape in relation to natural soundscapes found within aquatic tropical environments.
Resumo:
It is essential to provide experimental evidence and reliable predictions of the effects of water stress on crop production in the drier, less predictable environments. A field experiment undertaken in southeast Queensland, Australia with three water regimes (fully irrigated, rainfed and irrigated until late canopy expansion followed by rainfed) was used to compare effects of water stress on crop production in two maize (Zea mays L.) cultivars (Pioneer 34N43 and Pioneer 31H50). Water stress affected growth and yield more in Pioneer 34N43 than in Pioneer 31H50. A crop model APSIM-Maize, after having been calibrated for the two cultivars, was used to simulate maize growth and development under water stress. The predictions on leaf area index (LAI) dynamics, biomass growth and grain yield under rain fed and irrigated followed by rain fed treatments was reasonable, indicating that stress indices used by APSIM-Maize produced appropriate adjustments to crop growth and development in response to water stress. This study shows that Pioneer 31H50 is less sensitive to water stress and thus a preferred cultivar in dryland conditions, and that it is feasible to provide sound predictions and risk assessment for crop production in drier, more variable conditions using the APSIM-Maize model.