6 resultados para single impact
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Creontiades spp. (Hemiptera: Miridae) are sucking pests that attack buds, flowers and young pods in mungbeans, Vigna radiata (L.), causing these structures subsequently to abort. If left uncontrolled, mirids can cause 25-50% yield loss. Traditional industry practice has involved prophylactic applications of dimethoate to control mirids at budding and again a week later. The present trial was initiated to highlight the dangers of such a practice, in particular the risk of a subsequent Helicoverpa spp. lepidopteran pest outbreak. A single application of dimethoate halved the population of important natural enemies of Helicoverpa spp., and caused an above-threshold outbreak of Helicoverpa spp. within 11 days. This shows that even a moderate (e.g. 50%) reduction in natural enemies may be sufficient to increase Helicoverpa spp. populations in mungbeans. As a result, prophylactic sprays should not be used for the control of mirids in mungbeans, and dimethoate should be applied only when mirids are above the economic threshold. Indoxacarb was also tested to establish its effect on Helicoverpa spp., mirids and natural enemies. Indoxacarb showed potential for Helicoverpa spp. control and suppression of mirids and had little impact on natural enemies.
Resumo:
Laboratory experiments were conducted to determine the efficacy of spinosad (a biopesticide), chlorpyrifos-methyl (an organophosphorus compound (OP)) and s-methoprene (a juvenile hormone analogue) applied alone and in binary combinations against five stored-grain beetles in wheat. There were three strains of Rhyzopertha dominica, and one strain each of Sitophilus oryzae, Tribolium castaneum, Oryzaephilus surinamensis and Cryptolestes ferrugineus. These strains were chosen to represent a range of possible resistant genotypes, exhibiting resistance to organophosphates, pyrethroids or methoprene. Treatments were applied at rates that are registered or likely to be registered in Australia. Adults were exposed to freshly treated wheat for 2 weeks, and the effects of treatments on mortality and reproduction were determined. No single protectant or protectant combination controlled all insect strains, based on the criterion of >99% reduction in the number of live F1 adults relative to the control. The most effective combinations were spinosad at 1 mg kg-1+chlorpyrifos-methyl at 10 mg kg-1 which controlled all strains except for OP-resistant O. surinamensis, and chlorpyrifos-methyl at 10 mg kg-1+s-methoprene at 0.6 mg kg-1 which controlled all strains except for methoprene-resistant R. dominica. The results of this study demonstrate the difficulty in Australia, and potentially other countries which use protectants, of finding protectant treatments to control a broad range of pest species in the face of resistance development.
Resumo:
A highly polymorphic genetic locus of Stout Whiting was examined for evidence of geographical subdivision amongst samples collected from three locales in southern Queensland waters. Statistical indicators of subdivision were not significantly different from zero, suggesting that it is unlikely that the Stout Whiting resource in southern Queensland is genetically subdivided into separate stocks. It is recommended that the full-scale genetic program not proceed and that the resource be managed as a single stock.
Resumo:
Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that has the potential to greatly reduce biodiversity and pasture productivity in northern Australia’s rangelands. This paper reports an approach to develop best practice options for controlling medium to dense infestations of bellyache bush using combinations of control methods. The efficacy of five single treatments including foliar spraying, slashing, stick raking, burning and do nothing (control) were compared against 15 combinations of these treatments over 4 successive years. Treatments were evaluated using several attributes, including plant mortality, changes in population demographics, seedling recruitment, pasture yield and cost of treatment. Foliar spraying once each year for 4 years proved the most cost-effective control strategy, with no bellyache bush plants recorded at the end of the study. Single applications of slashing, stick raking and to a lesser extent burning, when followed up with foliar spraying also led to significantly reduced densities of bellyache bush and changed the population from a growing one to a declining one. Total experimental cost estimates over 4 successive years for treatments where burning, stick raking, foliar spraying, and slashing were followed with foliar spraying were AU$408, AU$584, AU$802 and AU$789 ha–1, respectively. Maximum pasture yield of 5.4 t ha–1 occurred with repeated foliar spraying. This study recommends that treatment combinations using either foliar spraying alone or as a follow up with slashing, stick raking or burning are best practice options following consideration of the level of control, changes in pasture yield and cost effectiveness.
Resumo:
This study has examined the dynamics (in terms of levels and serovar diversity) of Salmonella in the "dual litter environment" that occurs within a single shed as a result of a management practice common in Australia. The study also looked at the physical parameters of the litter (pH, moisture content, water activity and litter temperature) as a means of understanding the Salmonella dynamics in these litter environments. The Australian practice results in the brooder end of the shed having new litter each cycle while the grow-out end has re-used litter (a "dual litter environment"). Two farms that adopted this partial litter re-use practice were studied over one full broiler cycle each. Litter was sampled weekly for the levels (and serovars) of Salmonella during a farming cycle. There was a trend for lower levels of Salmonella (and a lower Salmonella serovar) diversity in the re-used litter environment as compared with the new litter environment. Of the physical parameters examined, it would appear that the lower water activity associated with the re-used litter may contribute to the Salmonella dynamics in the dual environment.
Resumo:
Two trials were done in this project. One was a continuation of work started under a previous GRDC/SRDC-funded activity, 'Strategies to improve the integration of legumes into cane based farming systems'. This trial aimed to assess the impact of trash and tillage management options and nematicide application on nematodes and crop performance. Methods and results are contained in the following publication: Halpin NV, Stirling GR, Rehbein WE, Quinn B, Jakins A, Ginns SP. The impact of trash and tillage management options and nematicide application on crop performance and plant-parasitic nematode populations in a sugarcane/peanut farming system. Proc. Aust. Soc. Sugar Cane Technol. 37, 192-203. Nematicide application in the plant crop significantly reduced total numbers of plant parasitic nematodes (PPN) but there was no impact on yield. Application of nematicide to the ratoon crop significantly reduced sugar yield. The study confirmed other work demonstrating that implementation of strategies like reduced tillage reduced populations of total PPN, suggesting that the soil was more suppressive to PPN in those treatments. The second trial, a variety trial, demonstrated the limited value of nematicide application in sugarcane farming systems. This study has highlighted that growers shouldn’t view nematicides as a ‘cure all’ for paddocks that have historically had high PPN numbers. Nematicides have high mammalian toxicity, have the potential to contaminate ground water (Kookana et al. 1995) and are costly. The cost of nematicide used in R1 was approx. $320 - $350/ha, adding $3.50/t of cane in a 100 t/ha crop. Also, our study demonstrated that a single nematicide treatment at the application rate registered for sugarcane is not very effective in reducing populations of nematode pests. There appears to be some levels of resistance to nematodes within the current suite of varieties available to the southern canelands. For example the soil in plots that were growing Q183 had 560% more root knot nematodes / 200mL soil compared to plots that grew Q245. The authors see great value in investment into a nematode screening program that could rate varieties into groups of susceptibility to both major sugarcane nematode pests. Such a rating could then be built into a decision support ‘tree’ or tool to better enable producers to select varieties on a paddock by paddock basis.