4 resultados para simultaneous confidence intervals

em eResearch Archive - Queensland Department of Agriculture


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comprehensive analysis was conducted using 48 sorghum QTL studies published from 1995 to 2010 to make information from historical sorghum QTL experiments available in a form that could be more readily used by sorghum researchers and plant breeders. In total, 771 QTL relating to 161 unique traits from 44 studies were projected onto a sorghum consensus map. Confidence intervals (CI) of QTL were estimated so that valid comparisons could be made between studies. The method accounted for the number of lines used and the phenotypic variation explained by individual QTL from each study. In addition, estimated centimorgan (cM) locations were calculated for the predicted sorghum gene models identified in Phytozome (JGI GeneModels SBI v1.4) and compared with QTL distribution genome-wide, both on genetic linkage (cM) and physical (base-pair/bp) map scales. QTL and genes were distributed unevenly across the genome. Heterochromatic enrichment for QTL was observed, with approximately 22% of QTL either entirely or partially located in the heterochromatic regions. Heterochromatic gene enrichment was also observed based on their predicted cM locations on the sorghum consensus map, due to suppressed recombination in heterochromatic regions, in contrast to the euchromatic gene enrichment observed on the physical, sequence-based map. The finding of high gene density in recombination-poor regions, coupled with the association with increased QTL density, has implications for the development of more efficient breeding systems in sorghum to better exploit heterosis. The projected QTL information described, combined with the physical locations of sorghum sequence-based markers and predicted gene models, provides sorghum researchers with a useful resource for more detailed analysis of traits and development of efficient marker-assisted breeding strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil testing is the most widely used tool to predict the need for fertiliser phosphorus (P) application to crops. This study examined factors affecting critical soil P concentrations and confidence intervals for wheat and barley grown in Australian soils by interrogating validated data from 1777 wheat and 150 barley field treatment series now held in the BFDC National Database. To narrow confidence intervals associated with estimated critical P concentrations, filters for yield, crop stress, or low pH were applied. Once treatment series with low yield (<1 t/ha), severe crop stress, or pHCaCl2 <4.3 were screened out, critical concentrations were relatively insensitive to wheat yield (>1 t/ha). There was a clear increase in critical P concentration from early trials when full tillage was common compared with those conducted in 1995–2011, which corresponds to a period of rapid shift towards adoption of minimum tillage. For wheat, critical Colwell-P concentrations associated with 90 or 95% of maximum yield varied among Australian Soil Classification (ASC) Orders and Sub-orders: Calcarosol, Chromosol, Kandosol, Sodosol, Tenosol and Vertosol. Soil type, based on ASC Orders and Sub-orders, produced critical Colwell-P concentrations at 90% of maximum relative yield from 15 mg/kg (Grey Vertosol) to 47 mg/kg (Supracalcic Calcarosols), with other soils having values in the range 19–27 mg/kg. Distinctive differences in critical P concentrations were evident among Sub-orders of Calcarosols, Chromosols, Sodosols, Tenosols, and Vertosols, possibly due to differences in soil properties related to P sorption. However, insufficient data were available to develop a relationship between P buffering index (PBI) and critical P concentration. In general, there was no evidence that critical concentrations for barley would be different from those for wheat on the same soils. Significant knowledge gaps to fill to improve the relevance and reliability of soil P testing for winter cereals were: lack of data for oats; the paucity of treatment series reflecting current cropping practices, especially minimum tillage; and inadequate metadata on soil texture, pH, growing season rainfall, gravel content, and PBI. The critical concentrations determined illustrate the importance of recent experimental data and of soil type, but also provide examples of interrogation pathways into the BFDC National Database to extract locally relevant critical P concentrations for guiding P fertiliser decision-making in wheat and barley.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NeEstimator v2 is a completely revised and updated implementation of software that produces estimates of contemporary effective population size, using several different methods and a single input file. NeEstimator v2 includes three single-sample estimators (updated versions of the linkage disequilibrium and heterozygote-excess methods, and a new method based on molecular coancestry), as well as the two-sample (moment-based temporal) method. New features include the following: (i) an improved method for accounting for missing data; (ii) options for screening out rare alleles; (iii) confidence intervals for all methods; (iv) the ability to analyse data sets with large numbers of genetic markers (10000 or more); (v) options for batch processing large numbers of different data sets, which will facilitate cross-method comparisons using simulated data; and (vi) correction for temporal estimates when individuals sampled are not removed from the population (Plan I sampling). The user is given considerable control over input data and composition, and format of output files. The freely available software has a new JAVA interface and runs under MacOS, Linux and Windows.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methods to measure enteric methane (CH4) emissions from individual ruminants in their production environment are required to validate emission inventories and verify mitigation claims. Estimates of daily methane production (DMP) based on consolidated short-term emission measurements are developing, but method verification is required. Two cattle experiments were undertaken to test the hypothesis that DMP estimated by averaging multiple short-term breath measures of methane emission rate did not differ from DMP measured in respiration chambers (RC). Short-term emission rates were obtained from a GreenFeed Emissions Monitoring (GEM) unit, which measured emission rate while cattle consumed a dispensed supplement. In experiment 1 (Expt. 1), four non-lactating cattle (LW=518 kg) were adapted for 18 days then measured for six consecutive periods. Each period consisted of 2 days of ad libitum intake and GEM emission measurement followed by 1 day in the RC. A prototype GEM unit releasing water as an attractant (GEM water) was also evaluated in Expt. 1. Experiment 2 (Expt. 2) was a larger study based on similar design with 10 cattle (LW=365 kg), adapted for 21 days and GEM measurement was extended to 3 days in each of the six periods. In Expt. 1, there was no difference in DMP estimated by the GEM unit relative to the RC (209.7 v. 215.1 g CH4/day) and no difference between these methods in methane yield (MY, 22.7 v. 23.7 g CH4/kg of dry matter intake, DMI). In Expt. 2, the correlation between GEM and RC measures of DMP and MY were assessed using 95% confidence intervals, with no difference in DMP or MY between methods and high correlations between GEM and RC measures for DMP (r=0.85; 215 v. 198 g CH4/day SEM=3.0) and for MY (r=0.60; 23.8 v. 22.1 g CH4/kg DMI SEM=0.42). When data from both experiments was combined neither DMP nor MY differed between GEM- and RC-based measures (P>0.05). GEM water-based estimates of DMP and MY were lower than RC and GEM (P<0.05). Cattle accessed the GEM water unit with similar frequency to the GEM unit (2.8 v. 3.5 times/day, respectively) but eructation frequency was reduced from 1.31 times/min (GEM) to once every 2.6 min (GEM water). These studies confirm the hypothesis that DMP estimated by averaging multiple short-term breath measures of methane emission rate using GEM does not differ from measures of DMP obtained from RCs. Further, combining many short-term measures of methane production rate during supplement consumption provides an estimate of DMP, which can be usefully applied in estimating MY.