9 resultados para simulation studies
em eResearch Archive - Queensland Department of Agriculture
Resumo:
This study compares estimates of the census size of the spawning population with genetic estimates of effective current and long-term population size for an abundant and commercially important marine invertebrate, the brown tiger prawn (Penaeus esculentus). Our aim was to focus on the relationship between genetic effective and census size that may provide a source of information for viability analyses of naturally occurring populations. Samples were taken in 2001, 2002 and 2003 from a population on the east coast of Australia and temporal allelic variation was measured at eight polymorphic microsatellite loci. Moments-based and maximum-likelihood estimates of current genetic effective population size ranged from 797 to 1304. The mean long-term genetic effective population size was 9968. Although small for a large population, the effective population size estimates were above the threshold where genetic diversity is lost at neutral alleles through drift or inbreeding. Simulation studies correctly predicted that under these experimental conditions the genetic estimates would have non-infinite upper confidence limits and revealed they might be overestimates of the true size. We also show that estimates of mortality and variance in family size may be derived from data on average fecundity, current genetic effective and census spawning population size, assuming effective population size is equivalent to the number of breeders. This work confirms that it is feasible to obtain accurate estimates of current genetic effective population size for abundant Type III species using existing genetic marker technology.
Resumo:
Highly productive sown pasture systems can result in high growth rates of beef cattle and lead to increases in soil nitrogen and the production of subsequent crops. The nitrogen dynamics and growth of grain sorghum following grazed annual legume leys or a grass pasture were investigated in a no-till system in the South Burnett district of Queensland. Two years of the tropical legumes Macrotyloma daltonii and Vigna trilobata (both self regenerating annual legumes) and Lablab purpureus (a resown annual legume) resulted in soil nitrate N (0-0.9 m depth), at sorghum sowing, ranging from 35 to 86 kg/ha compared with 4 kg/ha after pure grass pastures. Average grain sorghum production in the 4 cropping seasons following the grazed legume leys ranged from 2651 to 4012 kg/ha. Following the grass pasture, grain sorghum production in the first and second year was < 1900 kg/ha and by the third year grain yield was comparable to the legume systems. Simulation studies utilising the farming systems model APSIM indicated that the soil N and water dynamics following 2-year ley phases could be closely represented over 4 years and the prediction of sorghum growth during this time was reasonable. In simulated unfertilised sorghum crops grown from 1954 to 2004, grain yield did not exceed 1500 kg/ha in 50% of seasons following a grass pasture, while following 2-year legume leys, grain exceeded 3000 kg/ha in 80% of seasons. It was concluded that mixed farming systems that utilise short term legume-based pastures for beef production in rotation with crop production enterprises can be highly productive.
Resumo:
Soils with high levels of chloride and/or sodium in their subsurface layers are often referred to as having subsoil constraints (SSCs). There is growing evidence that SSCs affect wheat yields by increasing the lower limit of a crop's available soil water (CLL) and thus reducing the soil's plant-available water capacity (PAWC). This proposal was tested by simulation of 33 farmers' paddocks in south-western Queensland and north-western New South Wales. The simulated results accounted for 79% of observed variation in grain yield, with a root mean squared deviation (RMSD) of 0.50 t/ha. This result was as close as any achieved from sites without SSCs, thus providing strong support for the proposed mechanism that SSCs affect wheat yields by increasing the CLL and thus reducing the soil's PAWC. In order to reduce the need to measure CLL of every paddock or management zone, two additional approaches to simulating the effects of SSCs were tested. In the first approach the CLL of soils was predicted from the 0.3-0.5 m soil layer, which was taken as the reference CLL of a soil regardless of its level of SSCs, while the CLL values of soil layers below 0.5 m depth were calculated as a function of these soils' 0.3-0.5 m CLL values as well as of soil depth plus one of the SSC indices EC, Cl, ESP, or Na. The best estimates of subsoil CLL values were obtained when the effects of SSCs were described by an ESP-dependent function. In the second approach, depth-dependent CLL values were also derived from the CLL values of the 0.3-0.5 m soil layer. However, instead of using SSC indices to further modify CLL, the default values of the water-extraction coefficient (kl) of each depth layer were modified as a function of the SSC indices. The strength of this approach was evaluated on the basis of correlation of observed and simulated grain yields. In this approach the best estimates were obtained when the default kl values were multiplied by a Cl-determined function. The kl approach was also evaluated with respect to simulated soil moisture at anthesis and at grain maturity. Results using this approach were highly correlated with soil moisture results obtained from simulations based on the measured CLL values. This research provides strong evidence that the effects of SSCs on wheat yields are accounted for by the effects of these constraints on wheat CLL values. The study also produced two satisfactory methods for simulating the effects of SSCs on CLL and on grain yield. While Cl and ESP proved to be effective indices of SSCs, EC was not effective due to the confounding effect of the presence of gypsum in some of these soils. This study provides the tools necessary for investigating the effects of SSCs on wheat crop yields and natural resource management (NRM) issues such as runoff, recharge, and nutrient loss through simulation studies. It also facilitates investigation of suggested agronomic adaptations to SSCs.
Resumo:
The present study set out to test the hypothesis through field and simulation studies that the incorporation of short-term summer legumes, particularly annual legume lablab (Lablab purpureus cv. Highworth), in a fallow-wheat cropping system will improve the overall economic and environmental benefits in south-west Queensland. Replicated, large plot experiments were established at five commercial properties by using their machineries, and two smaller plot experiments were established at two intensively researched sites (Roma and St George). A detailed study on various other biennial and perennial summer forage legumes in rotation with wheat and influenced by phosphorus (P) supply (10 and 40 kg P/ha) was also carried out at the two research sites. The other legumes were lucerne (Medicago sativa), butterfly pea (Clitoria ternatea) and burgundy bean (Macroptilium bracteatum). After legumes, spring wheat (Triticum aestivum) was sown into the legume stubble. The annual lablab produced the highest forage yield, whereas germination, establishment and production of other biennial and perennial legumes were poor, particularly in the red soil at St George. At the commercial sites, only lablab-wheat rotations were experimented, with an increased supply of P in subsurface soil (20 kg P/ha). The lablab grown at the commercial sites yielded between 3 and 6 t/ha forage yield over 2-3 month periods, whereas the following wheat crop with no applied fertiliser yielded between 0.5 to 2.5 t/ha. The wheat following lablab yielded 30% less, on average, than the wheat in a fallow plot, and the profitability of wheat following lablab was slightly higher than that of the wheat following fallow because of greater costs associated with fallow management. The profitability of the lablab-wheat phase was determined after accounting for the input costs and additional costs associated with the management of fallow and in-crop herbicide applications for a fallow-wheat system. The economic and environmental benefits of forage lablab and wheat cropping were also assessed through simulations over a long-term climatic pattern by using economic (PreCAPS) and biophysical (Agricultural Production Systems Simulation, APSIM) decision support models. Analysis of the long-term rainfall pattern (70% in summer and 30% in winter) and simulation studies indicated that ~50% time a wheat crop would not be planted or would fail to produce a profitable crop (grain yield less than 1 t/ha) because of less and unreliable rainfall in winter. Whereas forage lablab in summer would produce a profitable crop, with a forage yield of more than 3 t/ha, ~90% times. Only 14 wheat crops (of 26 growing seasons, i.e. 54%) were profitable, compared with 22 forage lablab (of 25 seasons, i.e. 90%). An opportunistic double-cropping of lablab in summer and wheat in winter is also viable and profitable in 50% of the years. Simulation studies also indicated that an opportunistic lablab-wheat cropping can reduce the potential runoff+drainage by more than 40% in the Roma region, leading to improved economic and environmental benefits.
Resumo:
In current simulation packages for the management of extensive beef-cattle enterprises, the relationships for the key biological rates (namely conception and mortality) are quite rudimentary. To better estimate these relationships, cohort-level data covering 17 100 cow-years from six sites across northern Australia were collated and analysed. Further validation data, from 7200 cow-years, were then used to test these relationships. Analytical problems included incomplete and non-standardised data, considerable levels of correlation among the 'independent' variables, and the close similarity of alternate possible models. In addition to formal statistical analyses of these data, the theoretical equations for predicting mortality and conception rates in the current simulation models were reviewed, and then reparameterised and recalibrated where appropriate. The final models explained up to 80% of the variation in the data. These are now proposed as more accurate and useful models to be used in the prediction of biological rates in simulation studies for northern Australia. © The State of Queensland (through the Department of Agriculture, Fisheries and Forestry) 2012. © CSIRO.
Resumo:
Many beef producers within the extensive cattle industry of northern Australia attempt to maintain a constant herd size from year-to-year (fixed stocking), whereas others adjust stock numbers to varying degrees annually in response to changes in forage supply. The effects of these strategies on pasture condition and cattle productivity cannot easily be assessed by grazing trials. Simulation studies, which include feedbacks of changes to pasture condition on cattle liveweight gain, can extend the results of grazing trials both spatially and temporally. They can compare a large number of strategies, over long periods of time, for a range of climate periods, at locations which differ markedly in climate. This simulation study compared the pasture condition and cattle productivity achieved by fixed stocking at the long-term carrying capacity with that of 55 flexible stocking strategies at 28 locations across Queensland and the Northern Territory. Flexible stocking strategies differed markedly in the degree they increased or decreased cattle stocking rates after good and poor pasture growing seasons, respectively. The 28 locations covered the full range in average annual rainfall and inter-annual rainfall variability experienced across northern Australia. Constrained flexibility, which limited increases in stocking rates after good growing seasons to 10% but decreased them by up to 20% after poor growing seasons, provides sustainable productivity gains for cattle producers in northern Australia. This strategy can improve pasture condition and increase cattle productivity relative to fixed stocking at the long-term carrying capacity, and its capacity to do this was greatest in the semiarid rangeland regions that contain the majority of beef cattle in northern Australia. More flexible stocking strategies, which also increased stocking rates after good growing seasons by only half as much as they decreased them after poor growing seasons, were equally sustainable and more productive than constrained flexibility, but are often impractical at property and industry scales. Strategies with the highest limits (e.g. 70%) for both annual increases and decreases in stocking rates could achieve higher cattle productivity, but this was at the expense of pasture condition and was not sustainable. Constrained flexible stocking, with a 10% limit for increases and a 20% limit for decreases in stocking rates annually, is a risk-averse adaptation to high and unpredictable rainfall variability for the extensive beef industry of northern Australia. © Australian Rangeland Society 2016.
Resumo:
This project provided information, selection techniques and strategies to facilitate the development of high-yielding, stay-green wheat varieties for Australian growers through: a) Improved understanding of the relationships between seminal root traits and other root- and shoot-related traits in determining high-yielding, stay-green phenotypes. b). Molecular markers and rapid phenotypic screening methods that allow selection in breeding programs and identification of genetic regions controlling favourable traits. c). Identification of traits leading to high-yielding, stay-green phenotypes for particular target populations of environments using computer simulation studies.
Resumo:
Background: Plotless density estimators are those that are based on distance measures rather than counts per unit area (quadrats or plots) to estimate the density of some usually stationary event, e.g. burrow openings, damage to plant stems, etc. These estimators typically use distance measures between events and from random points to events to derive an estimate of density. The error and bias of these estimators for the various spatial patterns found in nature have been examined using simulated populations only. In this study we investigated eight plotless density estimators to determine which were robust across a wide range of data sets from fully mapped field sites. They covered a wide range of situations including animal damage to rice and corn, nest locations, active rodent burrows and distribution of plants. Monte Carlo simulations were applied to sample the data sets, and in all cases the error of the estimate (measured as relative root mean square error) was reduced with increasing sample size. The method of calculation and ease of use in the field were also used to judge the usefulness of the estimator. Estimators were evaluated in their original published forms, although the variable area transect (VAT) and ordered distance methods have been the subjects of optimization studies. Results: An estimator that was a compound of three basic distance estimators was found to be robust across all spatial patterns for sample sizes of 25 or greater. The same field methodology can be used either with the basic distance formula or the formula used with the Kendall-Moran estimator in which case a reduction in error may be gained for sample sizes less than 25, however, there is no improvement for larger sample sizes. The variable area transect (VAT) method performed moderately well, is easy to use in the field, and its calculations easy to undertake. Conclusion: Plotless density estimators can provide an estimate of density in situations where it would not be practical to layout a plot or quadrat and can in many cases reduce the workload in the field.
Resumo:
Parthenium weed (Parthenium hysterophorus L.) is an erect, branched, annual plant of the family Asteraceae. It is native to the tropical Americas, while now widely distributed throughout Africa, Asia, Oceania, and Australasia. Due to its allelopathic and toxic characteristics, parthenium weed has been considered to be a weed of global significance. These effects occur across agriculture (crops and pastures), within natural ecosystems, and has impacts upon health (human and animals). Although integrated weed management (IWM) for parthenium weed has had some success, due to its tolerance and good adaptability to temperature, precipitation, and CO2, this weed has been predicted to become more vigorous under a changing climate resulting in an altered canopy architecture. From the viewpoint of IWM, the altered canopy architecture may be associated with not only improved competitive ability and replacement but also may alter the effectiveness of biocontrol agents and other management strategies. This paper reports on a preliminary study on parthenium weed canopy architecture at three temperature regimes (day/night 22/15 °C, 27/20 °C, and 32/25 °C in thermal time 12/12 hours) and establishes a threedimensional (3D) canopy model using Lindenmayer-systems (L-systems). This experiment was conducted in a series of controlled environment rooms with parthenium weed plants being grown in a heavy clay soil. A sonic digitizer system was used to record the morphology, topology, and geometry of the plants for model construction. The main findings include the determination of the phyllochron which enables the prediction of parthenium weed growth under different temperature regimes and that increased temperature enhances growth and enlarges the plants canopy size and structure. The developed 3D canopy model provides a tool to simulate and predict the weed growth in response to temperature, and can be adjusted for studies of other climatic variables such as precipitation and CO2. Further studies are planned to investigate the effects of other climatic variables, and the predicted changes in the pathogenic biocontrol agent effectiveness.