4 resultados para silty clay soil

em eResearch Archive - Queensland Department of Agriculture


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In previous chapters of this volume, various authors describe the development of herbaceous legumes for pastures on clay soils in Queensland until about the 1980s. Emphasis is on the collection and evaluation of the genus Desmanthus, given its relatively recent addition to agriculture and considerable potential for providing useful pasture legumes for clay soils, particularly in the seasonally dry areas of northern Australia. Other genera are also discussed, including early assessments of herbaceous legumes that were later developed for clay soils (Clitoria, Macroptilium and Stylosanthes). This chapter provides a summary of the development of herbaceous legumes for clay soils in Queensland from these earlier assessments until present. Beef cattle farming is the principal agricultural enterprise in seasonally dry areas of northern Australia, including large areas of clay soils in Queensland. Sown and naturally occurring grasses provide the key feed resource, and the inclusion of sown legumes can significantly improve live-weight gain and reproductive performance per unit area. Queensland has been the centre of development for legumes for clay soils in tropical and subtropical areas of Australia, mostly through assessing and developing plants held in the Australian Tropical Forages Genetic Resource Collection (ATFGRC) (now a component of the Australia Pastures Genebank (APG)). The systematic appraisal of genetic material for clay soils was a focus of well-resourced government research up to the early to mid-1990s, but declined thereafter as sown pasture research teams were dismantled and funding to maintain the ATFGRC declined. Cultivar development is now conducted by small government, private enterprise and university research teams that collaborate where possible. In recent studies the use of experienced researcher knowledge and old plant evaluation sites has been particularly valuable for identifying potentially useful material. Cultivars for long- and short-term pastures on clay soils have been developed to the level of commercial seed production for Desmanthus (five cultivars from four species with two cultivars (one composite) in current use), Clitoria ternatea (one cultivar), Macroptilium bracteatum (two) and Stylosanthes seabrana (two). Other potential cultivars of these species are currently in various stages of development. Each species has different production niches depending on climate, clay soil type and grazing strategy. Adoption of these cultivars is occurring but has variously been impeded by limited promotion, mismatch of seed supply and demand, and difficulty establishing legumes in pastures of some key grass species. Recent renewed investment by the Australian Beef Industry has seen revived government research into pasture legumes in Queensland and rejuvenation of the APG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon (C) sequestration in soils is a means for increasing soil organic carbon (SOC) stocks and is a potential tool for climate change mitigation. One recommended management practice to increase SOC stocks is nitrogen (N) fertilisation, however examples of positive, negative or null SOC effects in response to N addition exist. We evaluated the relative importance of plant molecular structure, soil physical properties and soil ecological stoichiometry in explaining the retention of SOC with and without N addition. We tracked the transformation of 13C pulse-labelled buffel grass (Cenchrus ciliaris L.), wheat (Triticum aestivum L.) and lucerne (Medicago sativa L.) material to the <53 μm silt + clay soil organic C fraction, hereafter named “humus”, over 365-days of incubation in four contrasting agricultural soils, with and without urea-N addition. We hypothesised that: a) humus retention would be soil and litter dependent; b) humus retention would be litter independent once litter C:N ratios were standardised with urea-N addition; and c) humus retention would be improved by urea-N addition. Two and three-way factorial analysis of variance indicated that 13C humus was consistently soil and litter dependent, even when litter C:N ratios were standardised, and that the effect of urea-N addition on 13C humus was also soil and litter dependent. A boosted regression analysis of the effect of 44 plant and soil explanatory variables demonstrated that soil biological and chemical properties had the greatest relative influence on 13C humus. Regression tree analyses demonstrated that the greatest gains in 13C humus occurred in soils of relatively low total organic C, dissolved organic C and microbial biomass C (MBC), or with a combination of relatively high MBC and low C:N ratio. The greatest losses in 13C humus occurred in soils with a combination of relatively high MBC and low total N or increasing C:N ratio. We conclude that soil variables involved in soil ecological stoichiometry exert a greater relative influence on incorporating organic matter as humus compared to plant molecular structure and soil physical properties. Furthermore, we conclude that the effect of N fertilisation on humus retention is dependent upon soil ecological stoichiometry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The key to better nutrient efficiency is to simultaneously improve uptake and decrease losses. This study sought to achieve this balance using sorbent additions and manure nutrients (spent poultry litter; SL) compared with results obtained using conventional sources (Conv; urea nitrogen, N; and phosphate–phosphorus; P). Two experiments were conducted. Firstly, a phosphorus pot trial involving two soils (sandy and clay) based on a factorial design (Digitaria eriantha/Pennisetum clandestinum). Subsequently, a factorial N and P field trial was conducted on the clay soil (D. eriantha/Lolium rigidum). In the pot trial, sorbent additions (26.2 g of hydrotalcite [HT] g P− 1) to the Conv treatment deferred P availability (both soils) as did SL in the sandy soil. In this soil, P delivery by the Conv treatments declined rapidly, and began to fall behind the HT and SL treatments. Addition of HT increased post-trial Colwell P. In the field trial low HT-rates (3.75 and 7.5 g of HT g P− 1) plus bentonite, allowed dry matter production and nutrient uptake to match that of Conv treatments, and increased residual mineral-N. The SL treatments performed similarly to (or better than) Conv treatments regarding nutrient uptake. With successive application, HT forms may provide better supply profiles than Conv treatments. Our findings, combined with previous studies, suggest it is possible to use manures and ion-exchangers to match conventional N and P source productivity with lower risk of nutrient losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen fertilizer inputs dominate the fertilizer budget of grain sorghum growers in northern Australia, so optimizing use efficiency and minimizing losses are a primary agronomic objective. We report results from three experiments in southern Queensland sown on contrasting soil types and with contrasting rotation histories in the 2012-2013 summer season. Experiments were designed to quantify the response of grain sorghum to rates of N fertilizer applied as urea. Labelled 15N fertilizer was applied in microplots to determine the fate of applied N, while nitrous oxide (N2O) emissions were continuously monitored at Kingaroy (grass or legume ley histories) and Kingsthorpe (continuous grain cropping). Nitrous oxide is a useful indicator of gaseous N losses. Crops at all sites responded strongly to fertilizer N applications, with yields of unfertilized treatments ranging from 17% to 52% of N-unlimited potential. Maximum yields ranged from 4500 (Kupunn) to 5450 (Kingaroy) and 8010 (Kingsthorpe) kg/ha. Agronomic efficiency (kg additional grain produced/kg fertilizer N applied) at the optimum N rate on the Vertosol sites was 23 (80 N, Kupunn) to 25 (160N, Kingsthorpe), but 40-42 on the Ferrosols at Kingaroy (70-100N). Cumulative N2O emissions ranged from 0.44% (Kingaroy legume) to 0.93% (Kingsthorpe) and 1.15% (Kingaroy grass) of the optimum fertilizer N rate at each site, with greatest emissions from the Vertosol at Kingsthorpe. The similarity in N2O emissions factors between Kingaroy and Kingsthorpe contrasted markedly with the recovery of applied fertilizer N in plant and soil. Apparent losses of fertilizer N ranged from 0-5% (Ferrosols at Kingaroy) to 40-48% (Vertosols at Kupunn and Kingsthorpe). The greater losses on the Vertosols were attributed to denitrification losses and illustrate the greater risks of N losses in these soils in wet seasonal conditions.