4 resultados para semiconducting II-V materials

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In previous experiments, increased leaf-Phosphorus (P) content with increasing P supply enhanced the individual leaf expansion and water content of fresh cotton leaves in a severely drying soil. In this paper, we report on the bulk water content of leaves and its components, free and bound water, along with other measures of plant water status, in expanding cotton leaves of various ages in a drying soil with different P concentrations. The bound water in living tissue is more likely to play a major role in tolerance to abiotic stresses by maintaining the structural integrity and/or cell wall extensibility of the leaves, whilst an increased amount of free water might be able to enhance solute accumulation, leading to better osmotic adjustment and tolerance to water stress, and maintenance of the volumes of sub-cellular compartments for expansive leaf growth. There were strong correlations between leaf-P%, leaf water (total, free and bound water) and leaf expansion rate (LER) under water stress conditions in a severely drying soil. Increased soil-P enhanced the uptake of P from a drying soil, leading to increased supply of osmotically active inorganic solutes to the cells in growing leaves. This appears to have led to the accumulation of free water and more bound water, ultimately leading to increased leaf expansion rates as compared to plants in low P soil under similar water stress conditions. The greater amount of bound and free water in the high-P plants was not necessarily associated with changes in cell turgor, and appears to have maintained the cell-wall properties and extensibility under water stressed conditions in soils that are nutritionally P-deficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the influence of rainfall patterns on the water-use efficiency of wheat in a transect between Horsham (36°S) and Emerald (23°S) in eastern Australia. Water-use efficiency was defined in terms of biomass and transpiration, WUEB/T, and grain yield and evapotranspiration, WUEY/ET. Our working hypothesis is that latitudinal trends in WUEY/ET of water-limited crops are the complex result of southward increasing WUEB/T and soil evaporation, and season-dependent trends in harvest index. Our approach included: (a) analysis of long-term records to establish latitudinal gradients of amount, seasonality, and size-structure of rainfall; and (b) modelling wheat development, growth, yield, water budget components, and derived variables including WUEB/T and WUEY/ET. Annual median rainfall declined from around 600 mm in northern locations to 380 mm in the south. Median seasonal rain (from sowing to harvest) doubled between Emerald and Horsham, whereas median off-season rainfall (harvest to sowing) ranged from 460 mm at Emerald to 156 mm at Horsham. The contribution of small events (≤ 5 mm) to seasonal rainfall was negligible at Emerald (median 15 mm) and substantial at Horsham (105 mm). Power law coefficients (τ), i.e. the slopes of the regression between size and number of events in a log-log scale, captured the latitudinal gradient characterised by an increasing dominance of small events from north to south during the growing season. Median modelled WUEB/T increased from 46 kg/ha.mm at Emerald to 73 kg/ha.mm at Horsham, in response to decreasing atmospheric demand. Median modelled soil evaporation during the growing season increased from 70 mm at Emerald to 172 mm at Horsham. This was explained by the size-structure of rainfall characterised with parameter τ, rather than by the total amount of rainfall. Median modelled harvest index ranged from 0.25 to 0.34 across locations, and had a season-dependent latitudinal pattern, i.e. it was greater in northern locations in dry seasons in association with wetter soil profiles at sowing. There was a season-dependent latitudinal pattern in modelled WUEY/ET. In drier seasons, high soil evaporation driven by a very strong dominance of small events, and lower harvest index override the putative advantage of low atmospheric demand and associated higher WUEB/T in southern locations, hence the significant southwards decrease in WUEY/ET. In wetter seasons, when large events contribute a significant proportion of seasonal rain, higher WUEB/T in southern locations may translate into high WUEY/ET. Linear boundary functions (French-Schultz type models) accounting for latitudinal gradients in its parameters, slope, and x-intercept, were fitted to scatter-plots of modelled yield v. evapotranspiration. The x-intercept of the model is re-interpreted in terms of rainfall size structure, and the slope or efficiency multiplier is described in terms of the radiation, temperature, and air humidity properties of the environment. Implications for crop management and breeding are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for screening bacterial isolates for their potential to inhibit the growth of ruminal methanogenic Archaea was developed using a modification of the soft agar overlay technique, formally used for the isolation of lytic bacteriophages. This method may be used in the specific, hydrogen-rich conditions required for the growth of ruminal methanogenic Archaea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Australian utility pole network is aging and reaching its end of life, with 70% of the 5 million poles currently in-service nationally installed within the 20 years following the end of World War II. The estimated investment required for the replacement or remedial maintenance of the aging 3.5 millions poles is as high as 1.75 billion dollars. Additionally, an estimated 21,700 high-durability new poles are required each year, representing further investment of 13.5 million dollars per year. Yet, agreements which progressively phase out logging of native forests around Australia have been signed, giving the industry about 25 years to make the transition from Crown native forests to plantations and private forests. As utility poles were traditionally cut from native forest hardwood species, finding solutions to source new poles currently presents a challenge. This paper presents tests on Veneer Based Composite hardwood hollow utility poles manufactured from Gympie messmate (Eucalyptus cloeziana) plantation thinning. Small diameter poles of nominal 115 mm internal diameter and 15 mm wall-thickness were manufactured in two half-poles butt jointed together, using 9 veneers per halfpole. The poles were tested in bending and shear, and experimental test results are presented. The mechanical performance of the hollow poles is discussed and compared to hardwood poles cut from mature trees and of similar size. Future research and different options for improving the current concept are proposed in order to provide a more reliable and cost effective technical solution to the current shortage of utility poles. © RILEM 2014.