6 resultados para segregation

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A molecular marker-based map of perennial ryegrass (Lolium perenne L.) has been constructed through the use of polymorphisms associated with expressed sequence tags (ESTs). A pair-cross between genotypes from a North African ecotype and the cultivar Aurora was used to generate a two-way pseudo-testcross population. A selection of 157 cDNAs assigned to eight different functional categories associated with agronomically important biological processes was used to detect polymorphic EST–RFLP loci in the F1(NA6 × AU6) population. A comprehensive set of EST–SSR markers was developed from the analysis of 14,767 unigenes, with 310 primer pairs showing efficient amplification and detecting 113 polymorphic loci. Two parental genetic maps were produced: the NA6 genetic map contains 88 EST–RFLP and 71 EST–SSR loci with a total map length of 963 cM, while the AU6 genetic map contains 67 EST–RFLP and 58 EST–SSR loci with a total map length of 757 cM. Bridging loci permitted the alignment of homologous chromosomes between the parental maps, and a sub-set of genomic DNA-derived SSRs was used to relate linkage groups to the perennial ryegrass reference map. Regions of segregation distortion were identified, in some instances in common with other perennial ryegrass maps. The EST-derived marker-based map provides the basis for in silico comparative genetic mapping, as well as the evaluation of co-location between QTLs and functionally associated genetic loci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus Corymbia is closely related to the genus Eucalyptus, and like Eucalyptus contains tree species that are important for sub-tropical forestry. Corymbia's close relationship with Eucalyptus suggests genetic studies in Corymbia should benefit from transfer of genetic information from its more intensively studied relatives. Here we report a genetic map for Corymbia spp. based on microsatellite markers identified de novo in Corymbia sp or transferred from Eucalyptus. A framework consensus map was generated from an outbred F 2 population (n = 90) created by crossing two unrelated Corymbia torelliana x C. citriodora subsp. variegata F1 trees. The map had a total length of 367 cM (Kosambi) and was composed of 46 microsatellite markers distributed across 13 linkage groups (LOD 3). A high proportion of Eucalyptus microsatellites (90%) transferred to Corymbia. Comparative analysis between the Corymbia map and a published Eucalyptus map identified eight homeologous linkage groups in Corymbia with 13 markers mapping on one or both maps. Further comparative analysis was limited by low power to detect linkage due to low genome coverage in Corymbia, however, there was no convincing evidence for chromosomal structural differences because instances of non-synteny were associated with large distances on the Eucalyptus map. Segregation distortion was primarily restricted to a single linkage group and due to a deficit of hybrid genotypes, suggesting that hybrid inviability was one factor shaping the genetic composition of the F2 population in this inter-subgeneric hybrid. The conservation of microsatellite loci and synteny between Corymbia and Eucalyptus suggests there will be substantial value in exchanging information between the two groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Molecular marker technologies are undergoing a transition from largely serial assays measuring DNA fragment sizes to hybridization-based technologies with high multiplexing levels. Diversity Arrays Technology (DArT) is a hybridization-based technology that is increasingly being adopted by barley researchers. There is a need to integrate the information generated by DArT with previous data produced with gel-based marker technologies. The goal of this study was to build a high-density consensus linkage map from the combined datasets of ten populations, most of which were simultaneously typed with DArT and Simple Sequence Repeat (SSR), Restriction Enzyme Fragment Polymorphism (RFLP) and/or Sequence Tagged Site (STS) markers. Results: The consensus map, built using a combination of JoinMap 3.0 software and several purpose-built perl scripts, comprised 2,935 loci (2,085 DArT, 850 other loci) and spanned 1,161 cM. It contained a total of 1,629 'bins' (unique loci), with an average inter-bin distance of 0.7 ± 1.0 cM (median = 0.3 cM). More than 98% of the map could be covered with a single DArT assay. The arrangement of loci was very similar to, and almost as optimal as, the arrangement of loci in component maps built for individual populations. The locus order of a synthetic map derived from merging the component maps without considering the segregation data was only slightly inferior. The distribution of loci along chromosomes indicated centromeric suppression of recombination in all chromosomes except 5H. DArT markers appeared to have a moderate tendency toward hypomethylated, gene-rich regions in distal chromosome areas. On the average, 14 ± 9 DArT loci were identified within 5 cM on either side of SSR, RFLP or STS loci previously identified as linked to agricultural traits. Conclusion: Our barley consensus map provides a framework for transferring genetic information between different marker systems and for deploying DArT markers in molecular breeding schemes. The study also highlights the need for improved software for building consensus maps from high-density segregation data of multiple populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Root-lesion nematode (Pratylenchus thornei) is a serious pathogen of wheat in many countries. The International Triticeae Mapping Initiative (ITMI) population of recombinant inbred lines (RILs) was assessed for resistance to P. thornei to determine the chromosome locations of the resistance genes. The ITMI population is derived from a cross between the resistant synthetic hexaploid wheat W-7984 and a susceptible bread wheat cultivar Opata 85. Two years of phenotypic data for resistance to P. thornei were obtained in replicated glasshouse trials. Quantitative trait locus (QTL) analysis was performed using available segregation and map data for 114 RILs. A QTL on chromosome 6DS showed consistent effects for reduced nematode numbers (partial resistance) across years and accounted for 11% and 23% of the phenotypic variation. A second QTL for P. thornei resistance on chromosome 2BS accounted for an additional 19% and 5%. Restriction fragment length polymorphism (RFLP) and simple sequence repeat (SSR) markers associated with the QTLs are physically located in regions rich in major genes at the distal ends of the short chromosome arms of 6D and 2B. SSR markers with potential for marker-assisted selection of P. thornei resistance effective in different genetic backgrounds have been identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid screening tests and an appreciation of the simple genetic control of Alternaria brown spot (ABS) susceptibility have existed for many years, and yet the application of this knowledge to commercial-scale breeding programs has been limited. Detached leaf assays were first demonstrated more than 40 years ago and reliable data suggesting a single gene determining susceptibility has been emerging for at least 20 years. However it is only recently that the requirement for genetic resistance in new hybrids has become a priority, following increased disease prevalence in Australian mandarin production areas previously considered too dry for the pathogen. Almost all of the high-fruit-quality parents developed so far by the Queensland-based breeding program are susceptible to ABS necessitating the screening of their progeny to avoid commercialisation of susceptible hybrids. This is done effectively and efficiently by spraying 3-6 month old hybrid seedlings with a spore suspension derived from a toxin-producing field isolate of Alternaria alternate, then incubating these seedlings in a cool room at 25°C and high humidity for 5 days. Susceptible seedlings show clear disease symptoms and are discarded. Analysis of observed and expected segregation ratios loosely support the hypothesis for a single dominant gene for susceptibility, but do not rule out the possibility of alternative genetic models. After implementing the routine screening for ABS resistance for three seasons we now have more than 20,000 hybrids growing in field progeny blocks that have been screened for resistance to the ABS disease.