2 resultados para salts in soils
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Carbon (C) sequestration in soils is a means for increasing soil organic carbon (SOC) stocks and is a potential tool for climate change mitigation. One recommended management practice to increase SOC stocks is nitrogen (N) fertilisation, however examples of positive, negative or null SOC effects in response to N addition exist. We evaluated the relative importance of plant molecular structure, soil physical properties and soil ecological stoichiometry in explaining the retention of SOC with and without N addition. We tracked the transformation of 13C pulse-labelled buffel grass (Cenchrus ciliaris L.), wheat (Triticum aestivum L.) and lucerne (Medicago sativa L.) material to the <53 μm silt + clay soil organic C fraction, hereafter named “humus”, over 365-days of incubation in four contrasting agricultural soils, with and without urea-N addition. We hypothesised that: a) humus retention would be soil and litter dependent; b) humus retention would be litter independent once litter C:N ratios were standardised with urea-N addition; and c) humus retention would be improved by urea-N addition. Two and three-way factorial analysis of variance indicated that 13C humus was consistently soil and litter dependent, even when litter C:N ratios were standardised, and that the effect of urea-N addition on 13C humus was also soil and litter dependent. A boosted regression analysis of the effect of 44 plant and soil explanatory variables demonstrated that soil biological and chemical properties had the greatest relative influence on 13C humus. Regression tree analyses demonstrated that the greatest gains in 13C humus occurred in soils of relatively low total organic C, dissolved organic C and microbial biomass C (MBC), or with a combination of relatively high MBC and low C:N ratio. The greatest losses in 13C humus occurred in soils with a combination of relatively high MBC and low total N or increasing C:N ratio. We conclude that soil variables involved in soil ecological stoichiometry exert a greater relative influence on incorporating organic matter as humus compared to plant molecular structure and soil physical properties. Furthermore, we conclude that the effect of N fertilisation on humus retention is dependent upon soil ecological stoichiometry.
Resumo:
'Abnormal vertical growth' (AVG) was recognised in Australia as a dysfunction of macadamia (Macadamia spp.) in the mid-1990s. Affected trees displayed unusually erect branching, and poor flowering and yield. Since 2002, the commercial significance of AVG, its cause, and strategies to alleviate its affects, has been studied. The cause is still unknown, and AVG remains a serious threat to orchard viability. AVG affects both commercial and urban macadamia. It occurs predominantly in the warmer-drier production regions of Queensland and New South Wales. An estimated 100,000 orchard trees are affected, equating to an annual loss of $ 10.5 M. In orchards, AVG occurs as aggregations of affected trees, affected tree number can increase by 4.5% per year, and yield reduction can exceed 30%. The more upright cultivars 'HAES 344' and '741' are highly susceptible, while the more spreading cultivars 'A4', 'A16' and 'A268' show tolerance. Incidence is higher (p<0.05) in soils of high permeability and good drainage. No soil chemical anomaly has been found. Fine root dry weight of AVG trees (0-15 cm depth) was found lower (p<0.05) than non-AVG. Next generation sequencing has led to the discovery of a new Bacillus sp. and a bipartite Geminivirus, which may have a role in the disease. Trunk cinctures will increase (p<0.05) yield of moderately affected trees. Further research is needed to clarify whether a pathogen is the cause, the role of soil moisture in AVG, and develop a varietal solution.