3 resultados para red rain cells

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequestration of parasite-infected red blood cells (RBCs) in the microvasculature is an important pathological feature of both bovine babesiosis caused by Babesia bovis and human malaria caused by Plasmodium falciparum. Surprisingly, when compared with malaria, the cellular and molecular mechanisms that underlie this abnormal circulatory behaviour for RBCs infected with B. bovis have been relatively ignored. Here, we present some novel insights into the adhesive and mechanical changes that occur in B. bovis-infected bovine RBCs and compare them with the alterations that occur in human RBCs infected with P. falciparum. After infection with B. bovis, bovine RBCs become rigid and adhere to vascular endothelial cells under conditions of physiologically relevant flow. These alterations are accompanied by the appearance of ridge-like structures on the RBC surface that are analogous, but morphologically and biochemically different, to the knob-like structures on the surface of human RBCs infected with P. falciparum. Importantly, albeit for a limited number of parasite lines examined here, the extent of these cellular and rheological changes appear to be related to parasite virulence. Future investigations to identify the precise molecular composition of ridges and the proteins that mediate adhesion will provide important insight into the pathogenesis of both babesiosis and malaria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Avian haemophili demonstrating in vitro satellitic growth, also referred to as the V-factor or NAD requirement, have mainly been classified with Avibacterium paragallinarum (Haemophilus paragallinarum), Avibacterium avium (Pasteurella avium), Avibacterium volantium (Pasteurella volantium) and Avibacterium sp. A (Pasteurella species A). The aim of the present study was to assess the taxonomic position of 18 V-factor-requiring isolates of unclassified Haemophilus-like organisms isolated from galliforme, anseriforme, columbiforme and gruiforme birds as well as kestrels and psittacine birds including budgerigars by conventional phenotypic tests and 16S rRNA gene sequencing. All isolates shared phenotypical characteristics which allowed classification with Pasteurellaceae. Haemolysis of bovine red blood cells was negative. Haemin (X-factor) was not required for growth. Maximum-likelihood phylogenetic analysis including bootstrap analysis showed that six isolates were related to the avian 16S rRNA group and were classified as Avibacterium according to 16S rRNA sequence analysis. Surprisingly, the other 12 isolates were unrelated to Avibacterium. Two isolates were unrelated to any of the known 16S rRNA groups of Pasteurellaceae. Two isolates were related to Volucribacter of the avian 16S rRNA group. Seven isolates belonged to the Testudinis 16S rRNA group and out of these, two isolates were closely related to taxa 14 and 32 of Bisgaard, whereas four other isolates were found to form a genus-like group distantly related to taxon 40 and one isolated remained distantly related to other members of the Testudinis group. One isolate was closely related to taxon 26 (a member of Actinobacillus sensu stricto). The study documented major genetic diversity among V-factor-requiring avian isolates beyond the traditional interpretation that they only belong to Avibacterium, underlining the limited value of satellitic growth for identification of avian members of Pasteurellaceae. Our study also emphasized that these organisms will never be isolated without the use of special media satisfying the V-factor requirement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Campylobacter is a leading cause of foodborne bacterial gastroenteritis worldwide and infections can be fatal. The emergence of antibiotic-resistant Campylobacter spp. necessitates the development of new antimicrobials. We identified novel anti-Campylobacter small molecule inhibitors using a high throughput growth inhibition assay. To expedite screening, we made use of a “bioactive” library of 4,182 compounds that we have previously shown to be active against diverse microbes. Screening for growth inhibition of Campylobacter jejuni, identified 781 compounds that were either bactericidal or bacteriostatic at a concentration of 200 µM. Seventy nine of the bactericidal compounds were prioritized for secondary screening based on their physico-chemical properties. Based on the minimum inhibitory concentration against a diverse range of C. jejuni and a lack of effect on gut microbes, we selected 12 compounds. No resistance was observed to any of these 12 lead compounds when C. jejuni was cultured with lethal or sub-lethal concentrations suggesting that C. jejuni is less likely to develop resistance to these compounds. Top 12 compounds also possessed low cytotoxicity to human intestinal epithelial cells (Caco-2 cells) and no hemolytic activity against sheep red blood cells. Next, these 12 compounds were evaluated for ability to clear C. jejuni in vitro. A total of 10 compounds had an anti-C. jejuni effect in Caco-2 cells with some effective even at 25 µM concentrations. These novel 12 compounds belong to five established antimicrobial chemical classes; piperazines, aryl amines, piperidines, sulfonamide and pyridazinone. Exploitation of analogues of these chemical classes may provide Campylobacter specific drugs that can be applied in both human and animal medicine.