6 resultados para real interpolation space

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy® or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to 1 infected in 800 samples with pepper but never detecting more than 1 infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of cannibalism in communally reared crabs can be eliminated by separating the growing crabs into holding compartments. There is currently no information on optimal compartment size for growing crabs individually. 136 second instar crablets (Portunus sanguinolentus) (C2 ca. 7-10 mm carapace width (CW)) were grown for 90 days in 10 different-sized opaque and transparent walled acrylic compartments. The base area for each compartment ranged from small (32 mm × 32 mm) to large (176 mm × 176 mm). Effects of holding space and wall transparency on survival, CW, moult increment, intermoult period and average weekly gain (AWG) were examined. Most crabs reached instars C9-C10 (50-70 mm CW) by the end of experiment. The final survival rate in the smallest compartment was 25% mainly due to moult-related mortality predominantly occurring at the C9 instar. However, crabs in these smaller compartments had earlier produced significantly larger moult increments from instar to instar than those in the larger compartments (P < 0.05). Crabs in the smaller compartments (<65 mm × 65 mm) also showed significantly longer moult periods (P < 0.05). The net result was that AWG in CW was 5.22 mm week-1 for the largest compartment and 5.15 mm week-1 in smallest and did not differ significantly between compartment size groups (P = 0.916). Wall transparency had no impact on survival (P = 0.530) but a slight impact on AWG (P = 0.014). Survival rate was the best indicator of minimum acceptable compartment size (?43 mm × 43 mm) for C10 crablets because below this size death occurred before growth rate was significantly affected. For further growth, it would be necessary to transfer the crablets to larger compartments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equid herpesvirus 1 (EHV1) is a major disease of equids worldwide causing considerable losses to the horse industry. A variety of techniques, including PCR have been used to diagnose EHV1. Some of these PCRs were used in combination with other techniques such as restriction enzyme analysis (REA) or hybridisation, making them cumbersome for routine diagnostic testing and increasing the chances of cross-contamination. Furthermore, they involve the use of suspected carcinogens such as ethidium bromide and ultraviolet light. In this paper, we describe a real-time PCR, which uses minor groove-binding probe (MGB) technology for the diagnosis of EHV1. This technique does not require post-PCR manipulations thereby reducing the risk of cross-contamination. Most importantly, the technique is specific; it was able to differentiate EHV1 from the closely related member of the Alphaherpesvirinae, equid herpesvirus 4 (EHV4). It was not reactive with common opportunistic pathogens such as Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa and Enterobacter agglomerans often involved in abortion. Similarly, it did not react with equine pathogens such as Streptococcus equi, Streptococcus equisimilis, Streptococcus zooepidemicus, Taylorella equigenitalis and Rhodococcus equi, which also cause abortion. The results obtained with this technique agreed with results from published PCR methods. The assay was sensitive enough to detect EHV1 sequences in paraffin-embedded tissues and clinical samples. When compared to virus isolation, the test was more sensitive. This test will be useful for the routine diagnosis of EHV1 based on its specificity, sensitivity, ease of performance and rapidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiplex real-time PCR was designed to detect and differentiate equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4). The PCR targets the glycoprotein B gene of EHV-1 and EHV-4. Primers and probes were specific to each equine herpesvirus type and can be used in monoplex or multiplex PCRs, allowing the differentiation of these two closely related members of the Alphaherpesvirinae. The two probes were minor-groove binding probes (MGB?) labelled with 6-carboxy-fluorescein (FAM?) and VIC® for detection of EHV-1 and EHV-4, respectively. Ten EHV-1 isolates, six EHV-1 positive clinical samples, one EHV-1 reference strain (EHV-1.438/77), three EHV-4 positive clinical samples, two EHV-4 isolates and one EHV-4 reference strain (EHV-4 405/76) were included in this study. EHV-1 isolates, clinical samples and the reference strain reacted in the EHV-1 real-time PCR but not in the EHV-4 real-time PCR and similarly EHV-4 clinical samples, isolates and the reference strain were positive in the EHV-4 real-time PCR but not in the EHV-1 real-time PCR. Other herpesviruses, such as EHV-2, EHV-3 and EHV-5 were all negative when tested using the multiplex real-time PCR. When bacterial pathogens and opportunistic pathogens were tested in the multiplex real-time PCR they did not react with either system. The multiplex PCR was shown to be sensitive and specific and is a useful tool for detection and differentiation of EHV-1 and EHV-4 in a single reaction. A comprehensive equine herpesvirus disease investigation procedure used in our laboratory is also outlined. This procedure describes the combination of alphaherpesvirus multiplex real-time PCR along with existing gel-based PCRs described by other authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The further development of Taqman quantitative real-time PCR (qPCR) assays for the absolute quantitation of Marek's disease virus serotype 1 (MDV1) and Herpesvirus of turkeys (HVT) viruses is described and the sensitivity and reproducibility of each assay reported. Using plasmid DNA copies, the lower limit of detection was determined to be 5 copies for the MDV1 assay and 75 copies for the HVT assay. Both assays were found to be highly reproducible for Ct values and calculated copy numbers with mean intra- and inter-assay coefficients of variation being less than 5% for Ct and 20% for calculated copy number. The genome copy number of MDV1 and HVT viruses was quantified in PBL and feather tips from experimentally infected chickens, and field poultry dust samples. Parallelism was demonstrated between the plasmid-based standard curves, and standard curves derived from infected spleen material containing both viral and host DNA, allowing the latter to be used for absolute quantification. These methods should prove useful for the reliable differentiation and absolute quantitation of MDV1 and HVT viruses in a wide range of samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amount of space provided to animals governs important elements of their behaviour and, hence, is critical for their health and welfare. We review the use of allometric principles and equations to estimate the static space requirements of animals when standing and lying, and the space required for animals to feed, drink, stand-up and lie-down. We use the research literature relating to transportation and intensive housing of sheep and cattle to assess the validity of allometric equations for estimating space allowances. We investigated these areas because transportation and intensive housing provide points along a continuum in terms of the duration of confinement, (from hours to months) and spatial requirements are likely to increase with increasing duration of confinement, as animals will need to perform a greater behavioural repertoire for long-term survival, health and welfare. We find that, although there are theoretical reasons why allometric relationships to space allowances may vary slightly for different classes of stock, space allowances that have been demonstrated to have adverse effects on animal welfare during transportation correlated well with an inability to accommodate standing animals, as estimated from allometry. For intensive housing, we were able to detect a space allowance below which there were adverse effects on welfare. For short duration transportation during which animals remain standing, a space allowance per animal described by the allometric equation: area (m^2) = 0.020W^0.66, where W = liveweight (kg), would appear to be appropriate. Where it is desirable for all animals to lie simultaneously, then a minimum space allowance per animal described by the allometric equation: area (m^2) = 0.027W^0.66 appears to permit this, given that animals in a group time-share space. However, there are insufficient data to determine whether this allowance onboard a vehicle/vessel would enable animals to move and access food and water with ease. In intensive housing systems, a minimum space allowance per animal described by the allometric equation: area (m^2) = 0.033W^0.66 appears to be the threshold below which there are adverse effects on welfare. These suggested space allowances require verification with a range of species under different thermal conditions and, for transportation, under different conditions of vehicular/vessel stability. The minimum length of trough per animal (L in m) required for feeding and drinking can be determined from L = 0.064W^0.33, with the number of animals required to feed/drink simultaneously taken into account, together with any requirement to minimise competition. This also requires verification with a range of species. We conclude that allometric relationships are an appropriate basis for the formulation of space allowances for livestock.