2 resultados para random copolymers overall crystallization rate crystal growth rate isothermal crystallization kinetics poly (L-lactide)

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first larval instar has been identified as a critical stage for population mortality in Lepidoptera, yet due to the body size of these larvae, the factors that contribute to mortality under field conditions are still not clear. Dispersal behaviour has been suggested as a significant, but ignored factor contributing to mortality in first-instar lepidopteran larvae. The impact that leaving the host plant has on the mortality rate of Helicoverpa armigera neonates was examined in field crops and laboratory trials. In this study the following are examined: (1) the effects of soil surface temperature, and the level of shade within the crop, on the mortality of neonates on the soil after dropping off from the host plant; (2) the percentage of neonates that dropped off from a host plant and landed on the soil; and (3) the effects of exposure to different soil surface temperatures on the development and mortality of neonates. The findings of this study showed that: (1) on the soil, surface temperatures above 43°C were lethal for neonates, and exposure to these temperatures contributed greatly to the overall mortality rate observed; however, the fate of neonates on the soil varied significantly depending on canopy closure within the crop; (2) at least 15% of neonates dropped off from the host plant and landed on the soil, meaning that the proportion of neonates exposed to these condition is not trivial; and (3) 30 min exposure to soil surface temperatures approaching the lethal level (>43°C) has no significant negative effects on the development and mortality of larvae through to the second instar. Overall leaving the plant through drop-off contributes to first-instar mortality in crops with open canopies; however, survival of neonates that have lost contact with a host plant is possible, and becomes more likely later in the crop growing season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.