5 resultados para quantitative trait loci (qtl)

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rust Puccinia psidii infects many species in the family Myrtaceae. Native to South America, the pathogen has recently entered Australia which has a rich Myrtaceous flora, including trees of the ecologically and economically important genus Eucalyptus. We studied the genetic basis of variation in rust resistance in Eucalyptus globulus, the main plantation eucalypt in Australia. Quantitative trait loci (QTL) analysis was undertaken using 218 genotypes of an outcross F2 mapping family, phenotyped by controlled inoculation of their open pollinated progeny with the strain of P. psidii found in Australia. QTL analyses were conducted using a binary classification of individuals with no symptoms (immune) versus those with disease symptoms, and in a separate analysis dividing plants with disease symptoms into those exhibiting the hypersensitive response versus those with more severe symptoms. Four QTL were identified, two influencing whether a plant exhibited symptoms (Ppr2 and Ppr3), and two influencing the presence or absence of a hypersensitive reaction (Ppr4 and Ppr5). These QTL mapped to four different linkage groups, none of which overlap with Ppr1, the major QTL previously identified for rust resistance in Eucalyptus grandis. Candidate genes within the QTL regions are presented and possible mechanisms discussed. Together with past findings, our results suggest that P. psidii resistance in eucalypts is quantitative in nature and influenced by the complex interaction of multiple loci of variable effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

QTL identified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drought during grain filling is a common challenge for sorghum production in north-eastern Australia, central-western India, and sub-Saharan Africa. We show that the stay-green drought adaptation trait enhances sorghum grain yield under post-anthesis drought in these three regions. A positive relationship between stay-green and yield was generally found in breeding trials in north-eastern Australia that sampled 1668 unique hybrid combinations and 23 environments. Physiological studies in Australia also found that introgressing four individual stay-green (Stg1–4) quantitative trait loci (QTLs) into a senescent background reduced water demand before flowering and hence increased water supply during grain filling, resulting in higher grain yield relative to the senescent control. Studies in India found that various Stg QTLs affected both transpiration and transpiration efficiency, although these effects depended on the interaction between genetic background (S35 and R16) and individual QTLs. The yield variation unexplained by harvest index was related to transpiration efficiency in S35 (R2 = 0.29) and R16 (R2 = 0.72), and was related to total water extracted in S35 (R2 = 0.41) but not in R16. Finally, sixty-eight stay-green enriched lines were evaluated in six countries in sub-Saharan Africa during the 2013/14 season. Analysis of the data from Kenya indicates that stay-green and grain size were positively correlated at two sites: Kiboko (high yielding, r2=0.25) and Masongaleni (low yielding, r2=0.37). Together, these studies suggest that stay-green is a beneficial trait for sorghum production in the semi-arid tropics and is a consequence of traits altering the plant water budget.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genetic variability of 28 sorghum genotypes of known senescence phenotype was investigated using 66 SSR markers well-distributed across the sorghum genome. The genotypes of a number of lines from breeding programmes for stay-green were also determined. This included lines selected phenotypically for stay-green and also RSG 03123, a marker-assisted backcross progeny of R16 (recurrent parent) and B35 (stay-green donor). A total of 419 alleles were detected with a mean of 6.2 per locus. The number of alleles ranged from one for Xtxp94 to 14 for Xtxp88. Chromosome SBI-10 had the highest mean number of alleles (8.33), while SBI-05 had the lowest (4.17). The PIC values obtained ranged from zero to 0.89 in Xtxp94 and Xtxp88, respectively, with a mean of 0.68. On a chromosome basis, mean PIC values were highest in SBI-10 (0.81) and lowest in SBI-05 (0.53). Most of the alleles from B35 in RSG 03123 were found on chromosomes SBI-01, SBI-02 and SBI-03, confirming the successful introgression of quantitative trait loci associated with stay-green from B35 into the senescent background R16. However, the alternative stay-green genetic sources were found to be distinct based on either all the SSRs employed or using only those associated with the stay-green trait in B35. Therefore, the physiological and biochemical basis of each stay-green source should be evaluated in order to enhance the understanding of the functioning of the trait in the various backgrounds. These genetic sources of stay-green could provide a valuable resource for improving this trait in sorghum breeding programmes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unravelling the Musa genome allows genes and alleles linked to desired traits to be identified. Short stature and early flowering are desirable agronomic features of banana, as they are of bread wheat (Triticum aestivum). In wheat they were achieved through knowledge of the physiology and genetics of vernalization and photoperiod during development. Bananas and plantains have a facultative long-day response to photoperiod, as do wheat and wall cress (Arabidopsis thaliana). Using keyword searches of the genome of Musa acuminata 'Pahang' we found homologues of the genes of either T. aestivum or Arabidopsis that govern responses to vernalization and photoperiod. This knowledge needs to be interpreted in the context of plant development. Bananas have juvenile, mid-vegetative and reproductive phases of development. Leaf and bunch 'clocks' operate concurrently throughout the juvenile and mid-vegetative phases. In the mid-vegetative phase the plant becomes sensitive to photoperiod. Increased sensitivity to photoperiod reduces the overall pace of the bunch clock without affecting the leaf clock. Separation of the clocks changes the link between leaf number and time of flowering. The 'critical' quantitative trait for the time of flowering is the pace of the bunch clock up to bunch initiation. For bunch size it is the duration of the subsequent phase of female hand formation. Plants with either a short juvenile phase or a faster bunch clock in the mid-vegetative phase will produce fewer leaves and bunch early. In turn, independent manipulation of hand number per bunch and/or fruit per hand will provide manageable bunches with appropriate fruit size. Using published data we explore relationships between plant height, leaf number, bunch weight and hand number among bananas and plantains. Identifying and then manipulating the appropriate genes in Musa opens opportunities for earlier flowering, leading to plants with desirable agronomic qualities.