14 resultados para project sesame
em eResearch Archive - Queensland Department of Agriculture
Resumo:
As a first step to better targeting the activities of a project for improving management of western flower thrips, Frankliniella occidentialis, (WFT) in field grown vegetable crops, we surveyed growers, consultants and other agribusiness personnel in two regions of Queensland. Using face-to-face interviews, we collected data on key pests and measures used to manage them, the importance of WFT and associated viral diseases, sources of pest management information and additional skills and knowledge needed by growers and industry. Responses were similar in the two regions. While capsicum growers in one northern Queensland district had suffered serious losses from WFT damage in 2002, in general the pest was not seen as a major problem. In cucurbit crops, the silverleaf whitefly (Bemisia tabaci biotype B) was considered the most difficult insect pest to manage. Pest control tactics were largely based on pesticides although many respondents mentioned non-chemical methods such as good farm hygiene practices, control of weed hosts and regular crop monitoring, particularly when prompted. Respondents wanted to know more about pest identification, biology and damage, spray application and the best use of insecticides. Natural enemies were mentioned infrequently. Keeping up to date with available pesticide options, availability of new chemicals and options for a district-wide approach to managing pests emerged as key issues. Growers identified agricultural distributors, consultants, Queensland Department of Primary Industries staff, other growers and their own experience as important sources of information. Field days, workshops and seminars did not rank highly. Busy vegetable growers wanted these activities to be short and relevant, and preferred to be contacted by post and facsimile rather than email. In response to these results, we are focusing on three core, interrelated project extension strategies: (i) short workshops, seminars and farm walks to provide opportunities for discussion, training and information sharing with growers and their agribusiness advisors; (ii) communication via newsletters and information leaflets; (iii) support for commercialisation of services.
Resumo:
The primary aim of this study was to determine the relationship between telomere length and age in a range of marine invertebrates including abalone (Haliotis spp) oysters (Saccostrea glomerata), spiny lobsters (Sagmariasus verreauxi formerly Jasus verreauxi and Jasus edwardsii) and school prawns (Metapenaeus macleayi). Additionally, this relationship was studied in a vertebrate organism using the freshwater fish Silver perch (Bidyanus bidyanus). Telomere length differences between tissues were also examined in some species such as Saccostrea glomerata, Sagmariasus verreauxi and Bidyanus bidyanus. In some cases cultured specimens of known age were used and this is quoted in the spreadsheets. For other wild-caught specimens where age was not known, size was used as a proxy for age. This may be a broad size class, or be determined by shell size or carapace length depending on the organism. Each spreadsheet contains raw data of telomere length estimates from Terminal Restriction Fragment Assays (TRF) for various individuals of each species including appropriate details such as age or size and tissue. Telomere length estimates are given in base pairs (bp). In most cases replicate experiments were conducted on groups of samples three times but on a small number of occasions only two replicate experiments were conducted. Further description of the samples can be found in final report of FRDC 2007/033. The arithmetic average for each individual (sample ID) across the two or three replicate experiments is also given. Bidyanus bidyanus (SilverPerch) Two sheets are contained within. a) Comparison of telomere length between different tissues (heart, liver and muscle) within the three year old age class - two replicate experiments were conducted. b) Comparison of telomere length between fish of different but known ages (0.25, 1, 2, and 3 years old) in each of three tissues, heart, liver and muscle – three replicate experiments were conducted per tissue. Haliotis spp (Abalone species) Three species were tested. H. asinina Telomere length was compared in two age classes-11 month and 18 month old abalone using muscle tissue from the foot. Within gel-variation was also estimated using a single sample run three times on one gel (replicate experiment). H. laevigata x H. rubra hybrids Telomere length was compared in three known age classes – two, three and four years old using muscle tissue from the foot. H. rubra Telomere length was compared in a range of different sized abalone using muscle tissue from the foot. Shell size is also given for each abalone Saccostrea glomerata Three sheets are contained within the file. a) Samples came from Moreton Bay Queensland in 2007. Telomere length was compared in two tissues (gill and mantle) of oysters in three age groups (1, 3 and 4 years) b) Samples came from Moreton Bay Queensland in 2009. Telomere length was compared in three age classes using DNA from gill tissue only c) Samples came from Wallis Lake, New South Wales. Telomere length was estimated from whole body minus the shell from 1 year old oysters, gill tissue of 3 age classes (1.5 years, 3 and 4 years), mantle tissue of two age classes (3 and 4 years). Sagmariasus verreauxi (formerly Jasus verreauxi) Telomere length was estimated from abdomen tissue of puerulus, gill and muscle tissue of 3 year old, large and very large size classes of lobsters. Jasus edwardsii Telomere length was measured in two size classes of lobsters- adults of varying sizes using muscle tissue and puerulus using tissues from the abdomen minus the exoskeleton. Metapenaeus macleayi Telomere length was measured in three size classes of school prawns adults. Muscle tissue was used, minus the exoskeleton.
Resumo:
The productivity of a fisheries resource can be quantified from estimates of recruitment, individual growth and natural and fisheries-related mortality, assuming the spatial extent of the resource has been quantified and there is minimal immigration or emigration. The sustainability of a fisheries resource is facilitated by management controls such as minimum and maximum size limits and total allowable catch. Minimum size limits are often set to allow individuals the opportunity to reproduce at least once before the chance of capture. Total allowable catches are a proportion of the population biomass, which is estimated based on known reproduction, recruitment, mortality and growth rates. In some fisheries, however, management actions are put in place without quantification of the resource through the stock assessment process. This occurs because species-specific information, for example individual growth, may not be available. In these circumstances, management actions need to be precautionary to protect against future resource collapse, but this often means that the resource is lightly exploited. Consequently, the productivity of the resource is not fully realised. Australia’s most valuable fisheries are invertebrate fisheries (Australian Department of Agriculture Fisheries and Forestry, 2008). For example, Australian fisheries (i.e. excluding aquaculture) production of crustaceans (largely prawns, rock lobster and crab) was 41,000 tonnes in 2006/7, worth $778 million. Production from mollusc (largely abalone, scallops, oysters and squid) fisheries was 39,000 tonnes, worth $502 million. Together, in 2006/7 crustacean and mollusc fisheries represented 58% of the total value of Australian wild fisheries production. Sustainable management of Australia’s invertebrate fisheries is frustrated by the lack of data on species-specific growth rates. This project investigated a new method to estimate age, and hence individual growth rates, in invertebrate fisheries species. The principle behind the new aging method was that telomeres (i.e. DNA end-caps of chromosomes) get shorter as an individual gets older. We studied commercial crustacean and molluscan species. A vertebrate fish species (silver perch, Bidyanus bidyanus) was used as a control to standardise our work against the literature. We found a clear relationship between telomere length and shell size for temperate abalone (Haliotis rubra). Further research is recommended before the method can be implemented to assist management of wildharvested abalone populations. Age needs to be substituted for shell size in the relationship and it needs to be studied for abalone from several regions. This project showed that telomere length declined with increasing age in Sydney rock oysters (Saccostrea glomerata) and was affected by regional variation. A relationship was not apparent between telomere length and age (or size as a surrogate for age) for crustacean species (school prawns, Metapenaeus macleayi; eastern rock lobster, Sagmariasus verreauxi; southern rock lobster, Jasus edwardsii; and spanner crabs, Ranina ranina). For school prawns, there was no difference between telomere length in males and females. Further research is recommended, however, as telomeric DNA from crustaceans was difficult to analyse using the terminal restriction fragment (TRF) assay. Telomere lengths of spanner crabs and lobsters were at the upper limit of resolution of the assay used and results were affected by degradation and possible contamination of telomeric DNA. It is possible that telomere length is an indicator of remaining lifespan in molluscan and crustacean individuals, as suggested for some vertebrate species (e.g. Monaghan, 2010). Among abalone of similar shell size and among lobster pueruli, there was evidence of individuals having significantly longer or shorter telomeres than the group average. At a population level, this may be a surrogate for estimates of future natural mortality, which may have usefulness in the management of those populations. The method used to assay telomere length (terminal restriction fragment assay) performed adequately for most species, but it was too expensive and time-consuming to be considered a useful tool for gathering information for fisheries management. Research on alternative methods is strongly recommended.
Resumo:
This report provides the results from research undertaken in North Queensland towards recirculation of prawn farm waste waters through bioremediation ponds.
Resumo:
This article describes research undertaken in 2000 into using magroves in wastewater remediation ponds for prawn farms.
Resumo:
Performance measures for monitoring and comparing the reproductive performance of northern Australian beef herds.
Resumo:
Control of grazing distribution, management of stocking rate, wet season spelling and fire
Resumo:
To work with a major industry production/marketing unit to develop new pineapple varieties with good plant vigour, high yields and post-harvest attributes and eating quality equal to or better than the standard industry varieties 73-50 and MD2 under commercial production systems. The project uses previously developed germplasm as parental material.
Resumo:
The project tests synthetic hexaploid wheats for resistance to root-lesion nematodes.
Resumo:
Objective 1. Measure spatial and temporal trawl frequency of scallop grounds using VMS data. This will provide a relative measure of how often individual undersized scallops are caught and put through a tumbler 2. Estimate discard mortality and growth rates for saucer scallops using cage experiments. 3. Evaluate the current management measures, in particular the seasonal closure, rotational closure and seasonally varying minimum legal sizes using stock assessment and management modeling models. Recommend optimal range of management measures to ensure long-term viability and value of the Scallop fishery based on a formal management strategy evaluation. Outcomes acheived to date: 1. Improved understanding of the survival rates of discarded sub-legal scallops; 2. Preliminary von Bertalanffy growth parameters using data from tagged-and-released scallops; 3. Changing trends in vessels and fishing gear used in the Queensland scallop fishery and their effect on scallop catch rates over time using standardised catch rates quantified; 4. Increases in fishing power of vessels operating in the Queensland scallop fishery quantified; 5. Trawl intensity mapped and quantified for all Scallop Replenishment Areas; 6. Harvest Strategy Evaluations completed.
Enhancing economic input to the CQSS2 Project report. Commissioned by the Fitzroy Basin Association.
Resumo:
The Fitzroy Basin is the second largest catchment area in Australia covering 143,00 km² and is the largest catchment for the Great Barrier Reef lagoon (Karfs et al., 2009). The Great Barrier Reef is the largest reef system in the world; it covers an area of approximately 225,000 km² in the northern Queensland continental shelf. There are approximately 750 reefs that exist within 40 km of the Queensland Coast (Haynes et al., 2007). The prime determinant for the changes in water quality have been attributed to grazing, with beef production the largest single land use industry comprising 90% of the land area (Karfs et al., 2009). In response to the depletion of water quality in the reef, in 2003 a Reef Water Quality plan was developed by the Australian and Queensland governments. The plan targets as a priority sediment contributions from grazing cattle in high risk catchments (The State of Queensland and Commonwealth of Australia, 2003). The economic incentive strategy designed includes analysing the costs and benefits of best management practice that will lead to improved water quality (The State of Queensland and Commonwealth of Australia, 2003).