2 resultados para probability models
em eResearch Archive - Queensland Department of Agriculture
Resumo:
By quantifying the effects of climatic variability in the sheep grazing lands of north western and western Queensland, the key biological rates of mortality and reproduction can be predicted for sheep. These rates are essential components of a decision support package which can prove a useful management tool for producers, especially if they can easily obtain the necessary predictors. When the sub-models of the GRAZPLAN ruminant biology process model were re-parameterised from Queensland data along with an empirical equation predicting the probability of ewes mating added, the process model predicted the probability of pregnancy well (86% variation explained). Predicting mortality from GRAZPLAN was less successful but an empirical equation based on relative condition of the animal (a measure based on liveweight), pregnancy status and age explained 78% of the variation in mortalities. A crucial predictor in these models was liveweight which is not often recorded on producer properties. Empirical models based on climatic and pasture conditions estimated from the pasture production model GRASP, predicted marking and mortality rates for Mitchell grass (Astrebla sp.) pastures (81% and 63% of the variation explained). These prediction equations were tested against independent data from producer properties and the model successfully validated for Mitchell grass communities.
Resumo:
Climate matching software (CLIMEX) was used to prioritise areas to explore for biological control agents in the native range of cat's claw creeper Macfadyena unguis-cati (Bignoniaceae), and to prioritise areas to release the agents in the introduced ranges of the plant. The native distribution of cat's claw creeper was used to predict the potential range of climatically suitable habitats for cat's claw creeper in its introduced ranges. A Composite Match Index (CMI) of cat's claw creeper was determined with the 'Match Climates' function in order to match the ranges in Australia and South Africa where the plant is introduced with its native range in South and Central America. This information was used to determine which areas might yield climatically-adapted agents. Locations in northern Argentina had CMI values which best matched sites with cat's claw creeper infestations in Australia and South Africa. None of the sites from where three currently prioritised biological control agents for cat's claw creeper were collected had CMI values higher than 0.8. The analysis showed that central and eastern Argentina, south Brazil, Uruguay and parts of Bolivia and Paraguay should be prioritised for exploration for new biological control agents for cat's claw creeper to be used in Australia and South Africa.