8 resultados para pollen tube
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Eucalyptus argophloia Blakely (Western white gum) has shown potential as a commercial forestry timber species in marginal environments of north-eastern Australia. We measured early pollination success in Eucalyptus argophloia to compare pollination methods, determine the timing of stigma receptivity and compare fresh and stored pollen. Early pollination success was measured by counting pollen tubes in the style of E. argophloia 12 days after pollination. We compared the early pollination success of 1) Artificially Induced Protogyny (AIP), one-stop and three-stop methods of pollination; 2) flowers pollinated at 2 day intervals between 2 days before and 6 days after anthesis and 3) fresh pollen and pollen that had been stored for 9 months. Our results show significantly more pollen tubes from unpollinated AIP and AIP treatments than either the one-stop pollination or three-stop pollination treatments. This indicates that self-pollination occurs in the unpollinated AIP treatment. There was very little pollen tube growth in the one-stop method indicating that the three-stop method is the most suitable for this species. Stigma receptivity in E. argophloia commenced six days after anthesis and no pollen tube growth was observed prior to this. Fresh pollen resulted in pollen tube growth in the style whereas the stored pollen resulted in a total absence of pollen tube growth. We recommend that breeding programs incorporating E. argophloia as a female parent use the three-stop pollination method, and controlled pollination be carried out at least six days after anthesis using fresh pollen.
Resumo:
Phosphonate fungicides are used widely in the control of diseases caused by Phytophthora cinnamomi Rands. For the most part phosphonate is seen as a safe to use on crops with phytotoxicity rare. However, recent research has shown that phosphonate has detrimental effects on the floral biology of some indigenous Australian plants. Since phosphonate fungicides are regularly used for the control of Phytophthora root rot in avocados, research was carried out to study the translocation of phosphonate fungicide in 'Hass' trees and any effects on their floral biology. Field-grown trees were sprayed with 0, 0.06 or 0.12 M mono-dipotassium phosphonate (pH 7.2) at summer flush maturity, floral bud break or anthesis. Following treatment, phosphonic acid concentrations were determined in leaves, roots, inflorescence rachi and flowers and in vitro pollen germination and pollen tube growth studied. Phosphonic acid concentration in the roots and floral parts was related to their sink strength at the respective times of application with concentration in roots highest (36.9.mg g±1) after treatment at summer flush maturity and in flowers (234.7 mg g±1) after treatment during early anthesis. Phosphonate at >0.03 M was found to be significantly phytotoxic to in vitro pollen germination and pollen tube growth. However, this rate gave a concentration far in excess of that measured in plant tissues following standard commercial applications of mono-dipotassium phosphonate fungicide. There was a small effect on pollen germination and pollen tube growth when 0.06 and 0.12 M mono-dipotassium phosphonate was applied during early anthesis. However, under favourable pollination and fruit set conditions it is not expected to have commercial impact on tree yield. However, there may be detrimental commercial implications from phosphonate sprays at early anthesis if unfavourable climatic conditions for pollination and fruit set subsequently occur. A commercial implication from this study is that phosphonic acid root concentrations can be elevated and maintained with strategic foliar applications of phosphonate fungicide timed to coincide with peaks in root sink strength. These occur at the end of the spring and summer flushes when shoot growth is relatively quiescent. Additional foliar applications may be advantageous in under high disease-pressure situations but where possible should be timed to minimize overlap with other significant growth events in the tree such as rapid inflorescence, and fruit development and major vegetative flushing.
Resumo:
Corymbia F1 hybrids have high potential for plantation forestry; however, little is known of their reproductive biology and potential for genetic pollution of native Corymbia populations. This study aims to quantify the influence of reproductive isolating barriers on the success of novel reciprocal and advanced generation Corymbia hybrids. Two maternal taxa, Corymbia citriodora subsp. citriodora and Corymbia torelliana, were pollinated using five paternal taxa, C. citriodora subsp. citriodora, C. torelliana, one C. torelliana x C. citriodora subsp. citriodora hybrid and two C. torelliana x C. citriodora subsp. variegata hybrids. Pollen tube, embryo and seed development were assessed. Reciprocal hybridisation between C. citriodora subsp. citriodora and C. torelliana was successful. Advanced generation hybrids were also created when C. citriodora subsp. citriodora or C. torelliana females were backcrossed with F1 hybrid taxa. Prezygotic reproductive isolation was identified via reduced pollen tube numbers in the style and reduced numbers of ovules penetrated by pollen tubes. Reproductive isolation was weakest within the C. citriodora subsp. citriodora maternal taxon, with two hybrid backcrosses producing equivalent capsule and seed yields to the intraspecific cross. High hybridising potential was identified between all Corymbia species and F1 taxa studied. This provides opportunities for advanced generation hybrid breeding, allowing desirable traits to be amplified. It also indicates risks of gene flow between plantation and native Corymbia populations.
Resumo:
Corymbia species from different sections hybridize readily, with some of increasing economic importance to plantation forestry. This study explores the locations of reproductive barriers between interspecific Corymbia hybrids and investigates the reproductive success of a wide taxonomic range of C. torelliana hybrid crosses. Pollen, pistil and embryo development were investigated for four C. torelliana crosses (C. torelliana, C. citriodora subsp. citriodora, C. tessellaris and C. intermedia) using fluorescent and standard microscopy to identify the locations of interspecific reproductive isolating barriers. Corymbia torelliana was also crossed with 16 taxa, representing six of the seven Corymbia sections, both Corymbia subgenera and one species each from the related genera, Angophora and Eucalyptus. All crosses were assessed for capsule and seed yields. Interspecific C. torelliana hybridization was controlled by pre-zygotic reproductive isolating barriers inhibiting pollen adhesion to the stigma, pollen germination, pollen tube growth in the style and pollen tube penetration of the micropyle. Corymbia torelliana (subgenus Blakella, sect. Torellianae) was successfully hybridized with Corymbia species from subgenus Blakella, particularly C. citriodora subsp. citriodora, C. citriodora subsp. variegata, C. henryi (sect. Maculatae) and C. tessellaris (sect. Abbreviatae), and subgenus Corymbia, particularly C. clarksoniana and C. erythrophloia (sect. Septentrionales). Attempted intergeneric hybrids between C. torelliana and either Angophora floribunda or Eucalyptus pellita were unsuccessful. Corymbia hybrids were formed between species from different sections and subgenera, but not with species from the related genera Angophora or Eucalyptus. Reproductive isolation between the interspecific Corymbia hybrid crosses was controlled by early- and late-acting pre-zygotic isolating barriers, with reproductive success generally decreasing with increasing taxonomic distance between parent species. These findings support the monophyly of Corymbia and the close relationships of infrageneric clades. The hybridizing propensity of Corymbia species provides opportunities for breeding but suggests risks of environmental gene flow. © The Author 2012. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Resumo:
Context Most studies assess pollination success at capsule maturity, and studies of pre-zygotic processes are often lacking. Aims This study investigates the suitability of controlled pollination for a potential forestry plantation species, Eucalyptus argophloia, by examining pre- and post-zygotic pollination success. Methods Pollen tube development, capsule set and seed set are compared following three-stop pollination, artificially induced protogyny (AIP), AIP unpollinated and open pollination. The fecundity of stored pollen was compared with that of fresh pollen. Results Three-stop pollination, AIP and open pollination had similar numbers of pollen tubes, but AIP unpollinated had none. Open pollination produced significantly more capsules and total number of seeds than the other treatments. There were significantly more seeds per retained capsule for the open pollination and three-stop pollination treatments than for the AIP and AIP unpollinated pollination treatments. There were no significant differences relative to the age of pollen. Conclusions Pre-zygotic success in terms of pollen tubes was similar for open-pollinated, three stop and AIP, but was not reflected in post-zygotic success when the open pollination and three-stop method produced significantly more seeds per retained capsule than the AIP treatments and open pollination yielded more seeds. Capsule set and total seed set for open pollination, and fewer capsules in controlled pollinations, may reflect physical damage to buds because of the small E. argophloia flowers. Suitable alternative breeding strategies other than controlled pollinations are discussed for this species.
Resumo:
Sectors of the forest plantation industry in Australia are set to expand in the near future using species or hybrids of the spotted gums (Corymbia, Section Politaria). Plantations of these taxa have already been introduced across temperate and subtropical Australia, representing locally exotic introductions from native stands in Queensland and New South Wales. A literature review was undertaken to provide insights into the potential for pollen-mediated gene flow from these plantations into native populations. Three factors suggest that such gene flow is likely; (1) interspecific hybridisation within the genus has frequently been recorded, including between distantly related species from different sections, (2) apparent high levels of vertebrate pollinator activity may result in plantation pollen being moved over hundreds of kilometres, (3) much of the plantation estate is being established among closely related taxa and therefore few barriers to gene flow are expected. Across Australia, 20 of the 100 native Corymbia taxa were found to have regional level co-occurrence with plantations. These were located most notably within regions of north-east New South Wales and south-east Queensland, however, co-occurrence was also found in south-west Western Australia and eastern Victoria. The native species found to have co-occurrence were then assessed for the presence of reproductive barriers at each step in the process of gene flow that may reduce the number of species at risk even further. The available data suggest three risk categories exist for Corymbia. The highest risk was for gene flow from plantations of spotted gums to native populations of spotted gums. This was based on the expected limited existence of pre- and post-zygotic barriers, substantial long-distance pollen dispersal and an apparent broad period of flowering in Corymbia citriodora subsp. variegata plantations. The following risk category focussed on gene flow from Corymbia torelliana × C. c. variegata hybrid plantations into native C. c. variegata, as the barriers associated with the production and establishment of F1 hybrids have been circumvented. For the lowest risk category, Corymbia plantations may present a risk to other non-spotted gum species, however, further investigation of the particular cross-combinations is required. A list of research directions is provided to better quantify these risks. Empirical data will need to be combined within a risk assessment framework that will not only estimate the likelihood of exotic gene flow, but also consider the conservation status/value of the native populations. In addition, the potential impacts of pollen flow from plantations will need to be weighed up against their various economic and environmental benefits.
Resumo:
A molecular assay with enhanced specificity and sensitivity has been developed to assist in the surveillance of Karnal bunt, a quarantineable disease with a significant impact on international trade. The protocol involves the release of DNA from spores, PCR amplification to enrich Tilletia-specific templates from released DNA and a five-plex, real-time PCR assay to detect, identify and distinguish T. indica and other Tilletia species (T. walkeri, T. ehrhartae, T. horrida and a group comprising T. caries, T. laevis, T. contraversa, T. bromi and T. fusca) in wheat grains. This fluorescent molecular tool has a detection sensitivity of one spore and thus bypasses the germination step, which in the current protocol is required for confirmation when only a few spores have been found in grain samples. The assay contains five dual-labelled, species-specific probes and associated species-specific primer pairs in a PCR mix in one tube. The different amplification products are detected simultaneously by five different fluorescence spectra. This specific and sensitive assay with reduced labour and reagent requirements makes it an effective and economically sustainable tool to be used in a Karnal bunt surveillance program. This protocol will also be valuable for the identification of some contaminant Tilletia sp. in wheat grains.
Resumo:
Coccidiosis is a costly worldwide enteric disease of chickens caused by parasites of the genus Eimeria. At present, there are seven described species that occur globally and a further three undescribed, operational taxonomic units (OTUs X, Y, and Z) that are known to infect chickens from Australia. Species of Eimeria have both overlapping morphology and pathology and frequently occur as mixed-species infections. This makes definitive diagnosis with currently available tests difficult and, to date, there is no test for the detection of the three OTUs. This paper describes the development of a PCR-based assay that is capable of detecting all ten species of Eimeria, including OTUs X, Y, and Z in field samples. The assay is based on a single set of generic primers that amplifies a single diagnostic fragment from the mitochondrial genome of each species. This one-tube assay is simple, low-cost, and has the capacity to be high throughput. It will therefore be of great benefit to the poultry industry for Eimeria detection and control, and the confirmation of identity and purity of vaccine strains.