6 resultados para pigmentation

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooked prawn colour is known to be a driver of market price and a visual indicator of product quality for the consumer. Although there is a general understanding that colour variation exists in farmed prawns, there has been no attempt to quantify this variation or identify where this variation is most prevalent. The objectives of this study were threefold: firstly to compare three different quantitative methods to measure prawn colour or pigmentation, two different colorimeters and colour quantification from digital images. Secondly, to quantify the amount of pigmentation variation that exists in farmed prawns within ponds, across ponds and across farms. Lastly, to assess the effects of ice storage or freeze-thawing of raw product prior to cooking. Each method was able to detect quantitative differences in prawn colour, although conversion of image based quantification of prawn colour from RGB to Lab was unreliable. Considerable colour variation was observed between prawns from different ponds and different farms, and this variation potentially affects product value. Different post-harvest methods prior to cooking were also shown to have a profound detrimental effect on prawn colour. Both long periods of ice storage and freeze thawing of raw product were detrimental to prawn colour. However, ice storage immediately after cooking was shown to be beneficial to prawn colour. Results demonstrated that darker prawn colour was preserved by holding harvested prawns alive in chilled seawater, limiting the time between harvesting and cooking, and avoiding long periods of ice storage or freeze thawing of uncooked product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isolates of Sclerotinia sclerotiorum were collected from infected lentil plants from 2 agro-ecological zones of Syria and used to study their comparative growth on culture media and pathogenicity on different lentil genotypes. The growth studies were carried out on Potato Dextrose Agar (PDA) growth media under laboratory conditions. Mycelial radial growth and sclerotial production were the parameters used to compare the isolates. Pathogenicity studies were carried out with selected isolates on 10 lentil genotypes, infected as detached shoots and as whole potted-plants in the plastic house. The isolates showed considerable variation in cultural characteristics through mycelial growth, mycelial pigmentation and sclerotial production in the media plates. There were significant differences in the growth and sclerotial production of most of the isolates, but no apparent correlation between mycelial growth and sclerotial production among the isolates. Genotype by isolate interactions was significant for the isolates tested for pathogenicity. These interactions, however, appeared to be caused by differences in virulence of the isolates and did not suggest the occurrence of distinct pathogenic races of the pathogen isolates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chytridiomycosis is an emerging infectious disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis, and its role in causing population declines and species extinctions worldwide has created an urgent need for methods to detect it. Several reports indicate that in anurans chytridiomycosis can cause the depigmentation of tadpole tnouthparts, but the accuracy of using depigmentation to determine disease status remains uncertain. Our objective was to determine for the Mountain Yellow-legged Frog (Rana muscosa) whether visual inspections of the extent of tadpole mouthpart depigmentation could be used to accurately categorize individual tadpoles or R. muscosa populations as B. dendrobatidis-positive or negative. This was accomplished by assessing the degree of mouthpart depigmentation in tadpoles of known disease status (based on PCR assays). The depigmentation of R. muscosa tadpole mouthparts was associated with the presence of B. dendrobatidis, and this association was particularly strong for upper jaw sheaths. Using a rule that classifies tadpoles with upper jaw sheaths that are 100% pigmented as uninfected and those with jaw sheaths that are <100% pigmented as infected resulted in the infection status of 86% of the tadpoles being correctly classified. By applying this rule to jaw sheath pigmentation scores averaged across all tadpoles inspected per site, we were able to correctly categorize the infection status of 92% of the study populations. Similar research on additional anurans is critically needed to determine how broadly applicable our results for R. muscosa are to other species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skin colour is an important quality parameter that influences mango fruit marketability. The mango industry is interested in controlled induction of skin blush in mangoes. It is desirable to understand the control of anthocyanin accumulation in mango skin. Among environmental factors known to induce anthocyanin accumulation in plants, light is the most studied. Light exposure induces pigmentation in various fruits, including apple, strawberry and grape. The effect of different light qualities on skin blush in mango fruit has received relatively little attention. The objective of this study was to assess anthocyanin accumulation and blush in response to blue, red and far red light from light-emitting diodes (LEDs) as applied to harvested mango fruit skin during storage at 12°C. Except for red light, the other wavelengths induced anthocyanin accumulation and skin blush as compared to the dark control treatment. Anthocyanin concentration and a∗ values were highest in blue light exposed fruit skin. This wavelength enhanced phenylalanine ammonia lyase activity in the mango skin, which may be associated with increased pigmentation. LED light treatment did not affect other fruit quality parameters at 21 days of storage, including firmness, total soluble solids and titratable acidity. Overall, the findings suggest that postharvest treatment with blue light can induce skin blush in mango fruit, which potentially may enhance their commercial value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-lycopene tomatoes (Solanum lycopersicum) are characterised by an intense red flesh-colour, due to an elevated concentration of the carotenoid, lycopene. However, this characteristic is only visible once fruit are cut open, making it impossible to differentiate intact high-lycopene fruit from standard tomato fruit, a clear market disadvantage. The reason that fruit colour of both high-lycopene and standard fruit looks almost identical from the outside is because tomato fruit normally contain the yellow flavonoid 'naringenin chalcone' in a thin layer of epidermal cells. It is this combination of naringenin chalcone and the underlying lycopene in the flesh that gives tomatoes their characteristic orange-red colour. By incorporation of the recessive colourless epidermis mutant allele 'y' (which prevents naringenin chalcone accumulation) into high-lycopene fruit, we have been able to create high-lycopene tomatoes (hp1.ogc.y) exhibiting a deep-pink colour visible from the outside. Hue angle of the skin of the high-lycopene 'y' mutant and a regular highlycopene tomato (hp1.ogc.Y) was 30 and 38°, respectively, while flesh values were similar at 31 and 32°, respectively. Removal of naringenin chalcone from the epidermis appeared to improve the visibility of underlying lycopene, such that fruit outer colour became a subsequent indicator of underlying flesh colour. The removal of epidermal pigmentation means that high-lycopene fruit can now be differentiated from standard tomato fruit in the market place without the need to cut fruit open.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fruit of certain mango cultivars (e.g., 'Honey Gold') can develop blush on their skin. Skin blush due to red pigmentation is from the accumulation of anthocyanins. Anthocyanin biosynthesis is related to environmental determinants, including light received by the fruit. It has been observed that mango skin blush varies with position in the tree canopy. However, little investigation into this spatial relationship has been conducted. The objective of this preliminary study was to describe a 'Honey Gold' mango tree by capturing its three-dimensional (3D) architecture. A light path tracing model QuasiMC was then used to predict light received by fruit. The use of this 3D model was to better understand the relationship between mango fruit skin blush and fruit position in the canopy. The digitised mango tree mimicked the real tree at a high level of detail. Observations on mango skin blush distribution supported the proposition that sunlight exposure is an absolute requirement for anthocyanin development. No blush development occurred on shaded skin. It was affirmed that 3D mapping could allow for virtual experiments. For example, for virtual canopy thinning (e.g., 'window pruning') to admit more sunlight with a view to improve fruit blush. Improvements to 3D modelling of mango skin blush could focus on increasing accuracy, e.g., measurement of leaf light reflectance and transmission and the inclusion of the effect shading by branches.