5 resultados para phosphotransferase inhibitor

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The most common treatments for scabies in human and veterinary settings are topical 5% permethrin or systemic treatment with ivermectin. However, these treatments have very little activity against arthropod eggs, and therefore repeated treatment is frequently required. In-vitro, biochemical and molecular studies have demonstrated that human mites are becoming increasingly resistant to both acaricides. To identify alternate acaricides, we undertook a pilot study of the in vivo activity of the benzoylphenyl urea inhibitor of chitin synthesis, fluazuron, in pigs with sarcoptic mange. Findings: Pigs (n = 5) were infested with S. scabei var suis, and randomised to treatment at the start of peak infestation with fluazuron at a dose of 10 mg/kg/day per os for 7 days (n = 3) or no treatment (n = 2). Clinical scores, skin scrapings for mite counts and blood sampling for pharmacokinetic analysis were undertaken. Fluazuron was well absorbed in treated pigs with measureable blood levels up to 4 weeks post treatment. No adverse effects were observed. Modest acaricidal activity of the compound was observed, with a reduction in severity of skin lesions in treated pigs, as well as a reduction in number of scabies mite's early life stages. Conclusions: The moderate efficacy of fluazuron against scabies mites indicates a lead to the development of alternate treatments for scabies, such as combination therapies that maybe applicable for human use in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhipicephalus micro plus is an important bovine ectoparasite, widely distributed in tropical and subtropical regions of the world causing large economic losses to the cattle industry. Its success as an ectoparasite is associated with its capacity to disarm the antihemostatic and anti-inflammatory reactions of the host. Serpins are protease inhibitors with an important role in the modulation of host-parasite interactions. The cDNA that encodes for a R. microplus serpin was isolated by RACE and subsequently cloned into the pPICZ alpha A vector. Sequence analysis of the cDNA and predicted amino acid showed that this cDNA has a conserved serpin domain. B- and T-cell epitopes were predicted using bioinformatics tools. The recombinant R. microplus serpin (rRMS-3) was secreted into the culture media of Pichia pastoris after methanol induction at 0.2 mg l(-1) qRT-PCR expression analysis of tissues and life cycle stages demonstrated that RMS-3 was mainly expressed in the salivary glands of female adult ticks. Immunological recognition of the rRMS-3 and predicted B-cell epitopes was tested using tick-resistant and susceptible cattle sera. Only sera from tick-resistant bovines recognized the B-cell epitope AHYNPPPPIEFT (Seq7). The recombinant RMS-3 was expressed in P. pastoris, and ELISA screening also showed higher recognition by tick-resistant bovine sera. The results obtained suggest that RMS-3 is highly and specifically secreted into the bite site of R. microplus feeding on tick-resistant bovines. Capillary feeding of semi-engorged ticks with anti-AHYNPPPPIEFT sheep sera led to an 81.16% reduction in the reproduction capacity of R. microplus. Therefore, it is possible to conclude that R. microplus serpin (RMS-3) has an important role in the host-parasite interaction to overcome the immune responses in resistant cattle. (C) 2012 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global cereal production will need to increase by 50% to 70% to feed a world population of about 9 billion by 2050. This intensification is forecast to occur mostly in subtropical regions, where warm and humid conditions can promote high N2O losses from cropped soils. To secure high crop production without exacerbating N2O emissions, new nitrogen (N) fertiliser management strategies are necessary. This one-year study evaluated the efficacy of a nitrification inhibitor (3,4-dimethylpyrazole phosphate—DMPP) and different N fertiliser rates to reduce N2O emissions in a wheat–maize rotation in subtropical Australia. Annual N2O emissions were monitored using a fully automated greenhouse gas measuring system. Four treatments were fertilized with different rates of urea, including a control (40 kg-N ha−1 year−1), a conventional N fertiliser rate adjusted on estimated residual soil N (120 kg-N ha−1 year−1), a conventional N fertiliser rate (240 kg-N ha−1 year−1) and a conventional N fertiliser rate (240 kg-N ha−1 year−1) with nitrification inhibitor (DMPP) applied at top dressing. The maize season was by far the main contributor to annual N2O emissions due to the high soil moisture and temperature conditions, as well as the elevated N rates applied. Annual N2O emissions in the four treatments amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O–N ha−1 year−1, respectively, and corresponded to emission factors of 0.29%, 0.39%, 0.69% and 0.16% of total N applied. Halving the annual conventional N fertiliser rate in the adjusted N treatment led to N2O emissions comparable to the DMPP treatment but extensively penalised maize yield. The application of DMPP produced a significant reduction in N2O emissions only in the maize season. The use of DMPP with urea at the conventional N rate reduced annual N2O emissions by more than 60% but did not affect crop yields. The results of this study indicate that: (i) future strategies aimed at securing subtropical cereal production without increasing N2O emissions should focus on the fertilisation of the summer crop; (ii) adjusting conventional N fertiliser rates on estimated residual soil N is an effective practice to reduce N2O emissions but can lead to substantial yield losses if the residual soil N is not assessed correctly; (iii) the application of DMPP is a feasible strategy to reduce annual N2O emissions from sub-tropical wheat–maize rotations. However, at the N rates tested in this study DMPP urea did not increase crop yields, making it impossible to recoup extra costs associated with this fertiliser. The findings of this study will support farmers and policy makers to define effective fertilisation strategies to reduce N2O emissions from subtropical cereal cropping systems while maintaining high crop productivity. More research is needed to assess the use of DMPP urea in terms of reducing conventional N fertiliser rates and subsequently enable a decrease of fertilisation costs and a further abatement of fertiliser-induced N2O emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Rhipicephalus (Boophilus) microplus evades the host's haemostatic system through a complex protein array secreted into tick saliva. Serine protease inhibitors (serpins) conform an important component of saliva which are represented by a large protease inhibitor family in Ixodidae. These secreted and non-secreted inhibitors modulate diverse and essential proteases involved in different physiological processes. Methods: The identification of R. microplus serpin sequences was performed through a web-based bioinformatics environment called Yabi. The database search was conducted on BmiGi V1, BmiGi V2.1, five SSH libraries, Australian tick transcriptome libraries and RmiTR V1 using bioinformatics methods. Semi quantitative PCR was carried out using different adult tissues and tick development stages. The cDNA of four identified R. microplus serpins were cloned and expressed in Pichia pastoris in order to determine biological targets of these serpins utilising protease inhibition assays. Results: A total of four out of twenty-two serpins identified in our analysis are new R. microplus serpins which were named as RmS-19 to RmS-22. The analyses of DNA and predicted amino acid sequences showed high conservation of the R. microplus serpin sequences. The expression data suggested ubiquitous expression of RmS except for RmS-6 and RmS-14 that were expressed only in nymphs and adult female ovaries, respectively. RmS-19, and -20 were expressed in all tissues samples analysed showing their important role in both parasitic and non-parasitic stages of R. microplus development. RmS-21 was not detected in ovaries and RmS-22 was not identified in ovary and nymph samples but were expressed in the rest of the samples analysed. A total of four expressed recombinant serpins showed protease specific inhibition for Chymotrypsin (RmS-1 and RmS-6), Chymotrypsin / Elastase (RmS-3) and Thrombin (RmS-15). Conclusion: This study constitutes an important contribution and improvement to the knowledge about the physiologic role of R. microplus serpins during the host-tick interaction.