12 resultados para performance assessment
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Early-in-life female and male measures with potential to be practical genetic indicators were chosen from earlier analyses and examined together with genomic measures for multi-trait use to improve female reproduction of Brahman cattle. Combinations of measures were evaluated on the genetic gains expected from selection of sires and dams for each of age at puberty (AGECL, i.e. first observation of a corpus luteum), lactation anoestrous interval in 3-year-old cows (LAI), and lifetime annual weaning rate (LAWR, i.e. the weaning rate of cows based on the number of annual matings they experienced over six possible matings). Selection was on an index of comparable records for each combination. Selection intensities were less than theoretically possible but assumed a concerted selection effort was able to be made across the Brahman breed. The results suggested that substantial genetic gains could be possible but need to be confirmed in other data. The estimated increase in LAWR in 10 years, for combinations without or with genomic measures, ranged from 8 to 12 calves weaned per 100 cows from selection of sires, and from 12 to 15 calves weaned per 100 cows from selection of sires and dams. Corresponding reductions in LAI were 60-103 days or 94-136 days, and those for AGECL were 95-125 or 141-176 days, respectively. Coat score (a measure of the sleekness or wooliness of the coat) and hip height in females, and preputial eversion and liveweight in males, were measures that may warrant wider recording for Brahman female reproduction genetic evaluation. Pregnancy-test outcomes from Matings 1 and 2 also should be recorded. Percentage normal sperm may be important to record for reducing LAI and scrotal size and serum insulin-like growth factor-I concentration in heifers at 18 months for reducing AGECL. Use of a genomic estimated breeding value (EBV) in combination with other measures added to genetic gains, especially at genomic EBV accuracies of 40%. Accuracies of genomic EBVs needed to approach 60% for the genomic EBV to be the most important contributor to gains in the combinations of measures studied.
Resumo:
Recent decreases in costs, and improvements in performance, of silicon array detectors open a range of potential applications of relevance to plant physiologists, associated with spectral analysis in the visible and short-wave near infra-red (far-red) spectrum. The performance characteristics of three commercially available ‘miniature’ spectrometers based on silicon array detectors operating in the 650–1050-nm spectral region (MMS1 from Zeiss, S2000 from Ocean Optics, and FICS from Oriel, operated with a Larry detector) were compared with respect to the application of non-invasive prediction of sugar content of fruit using near infra-red spectroscopy (NIRS). The FICS–Larry gave the best wavelength resolution; however, the narrow slit and small pixel size of the charge-coupled device detector resulted in a very low sensitivity, and this instrumentation was not considered further. Wavelength resolution was poor with the MMS1 relative to the S2000 (e.g. full width at half maximum of the 912 nm Hg peak, 13 and 2 nm for the MMS1 and S2000, respectively), but the large pixel height of the array used in the MMS1 gave it sensitivity comparable to the S2000. The signal-to-signal standard error ratio of spectra was greater by an order of magnitude with the MMS1, relative to the S2000, at both near saturation and low light levels. Calibrations were developed using reflectance spectra of filter paper soaked in range of concentrations (0–20% w/v) of sucrose, using a modified partial least squares procedure. Calibrations developed with the MMS1 were superior to those developed using the S2000 (e.g. coefficient of correlation of 0.90 and 0.62, and standard error of cross-validation of 1.9 and 5.4%, respectively), indicating the importance of high signal to noise ratio over wavelength resolution to calibration accuracy. The design of a bench top assembly using the MMS1 for the non-invasive assessment of mesocarp sugar content of (intact) melon fruit is reported in terms of light source and angle between detector and light source, and optimisation of math treatment (derivative condition and smoothing function).
Resumo:
Spectral data were collected of intact and ground kernels using 3 instruments (using Si-PbS, Si, and InGaAs detectors), operating over different areas of the spectrum (between 400 and 2500 nm) and employing transmittance, interactance, and reflectance sample presentation strategies. Kernels were assessed on the basis of oil and water content, and with respect to the defect categories of insect damage, rancidity, discoloration, mould growth, germination, and decomposition. Predictive model performance statistics for oil content models were acceptable on all instruments (R2 > 0.98; RMSECV < 2.5%, which is similar to reference analysis error), although that for the instrument employing reflectance optics was inferior to models developed for the instruments employing transmission optics. The spectral positions for calibration coefficients were consistent with absorbance due to the third overtones of CH2 stretching. Calibration models for moisture content in ground samples were acceptable on all instruments (R2 > 0.97; RMSECV < 0.2%), whereas calibration models for intact kernels were relatively poor. Calibration coefficients were more highly weighted around 1360, 740 and 840 nm, consistent with absorbance due to overtones of O-H stretching and combination. Intact kernels with brown centres or rancidity could be discriminated from each other and from sound kernels using principal component analysis. Part kernels affected by insect damage, discoloration, mould growth, germination, and decomposition could be discriminated from sound kernels. However, discrimination among these defect categories was not distinct and could not be validated on an independent set. It is concluded that there is good potential for a low cost Si photodiode array instrument to be employed to identify some quality defects of intact macadamia kernels and to quantify oil and moisture content of kernels in the process laboratory and for oil content in-line. Further work is required to examine the robustness of predictive models across different populations, including growing districts, cultivars and times of harvest.
Resumo:
The utility of near infrared spectroscopy as a non-invasive technique for the assessment of internal eating quality parameters of mandarin fruit (Citrus reticulata cv. Imperial) was assessed. The calibration procedure for the attributes of TSS (total soluble solids) and DM (dry matter) was optimised with respect to a reference sampling technique, scan averaging, spectral window, data pre-treatment (in terms of derivative treatment and scatter correction routine) and regression procedure. The recommended procedure involved sampling of an equatorial position on the fruit with 1 scan per spectrum, and modified partial least squares model development on a 720–950-nm window, pre-treated as first derivative absorbance data (gap size of 4 data points) with standard normal variance and detrend scatter correction. Calibration model performance for the attributes of TSS and DM content was encouraging (typical Rc2 of >0.75 and 0.90, respectively; typical root mean squared standard error of calibration of <0.4 and 0.6%, respectively), whereas that for juiciness and total acidity was unacceptable. The robustness of the TSS and DM calibrations across new populations of fruit is documented in a companion study.
Resumo:
The robustness of multivariate calibration models, based on near infrared spectroscopy, for the assessment of total soluble solids (TSS) and dry matter (DM) of intact mandarin fruit (Citrus reticulata cv. Imperial) was assessed. TSS calibration model performance was validated in terms of prediction of populations of fruit not in the original population (different harvest days from a single tree, different harvest localities, different harvest seasons). Of these, calibration performance was most affected by validation across seasons (signal to noise statistic on root mean squared error of prediction of 3.8, compared with 20 and 13 for locality and harvest day, respectively). Procedures for sample selection from the validation population for addition to the calibration population (‘model updating’) were considered for both TSS and DM models. Random selection from the validation group worked as well as more sophisticated selection procedures, with approximately 20 samples required. Models that were developed using samples at a range of temperatures were robust in validation for TSS and DM.
Resumo:
The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals. The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to 1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by a. conducting comprehensive computer simulations, and by b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus). 2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF). 3. Produce software for the calculation of Ne, and to make it widely available. The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population. Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species. The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number. We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future. Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work. During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF). Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.
Resumo:
Near infrared spectroscopy (NIRS) combined with multivariate analysis techniques was applied to assess phenol content of European oak. NIRS data were firstly collected directly from solid heartwood surfaces: in doing so, the spectra were recorded separately from the longitudinal radial and the transverse section surfaces by diffuse reflectance. The spectral data were then pretreated by several pre-processing procedures, such as multiplicative scatter correction, first derivative, second derivative and standard normal variate. The tannin contents of sawmill collected from the longitudinal radial and transverse section surfaces were determined by quantitative extraction with water/methanol (1:4, by vol). Then, total phenol contents in tannin extracts were measured by the Folin-Ciocalteu method. The NIR data were correlated against the Folin-Ciocalteu results. Calibration models built with partial least squares regression displayed strong correlation - as expressed by high determination correlation coefficient (r2) and high ratio of performance to deviation (RPD) - between measured and predicted total phenols content, and weak calibration and prediction errors (RMSEC, RMSEP). The best calibration was provided with second derivative spectra (r2 value of 0.93 for the longitudinal radial plane and of 0.91 for the transverse section plane). This study illustrates that the NIRS technique when used in conjunction with multivariate analysis could provide reliable, quick and non-destructive assessment of European oak heartwood extractives.
Resumo:
A variety of materials were trialed as supported permeable covers using a series of laboratory-scale anaerobic digesters. Efficacy of cover performance was assessed in terms of impact on odour and greenhouse gas emission rate, and the characteristics of anaerobic liquor. Data were collected over a 12-month period. Initially the covers reduced the rate of odour emission 40-100 times relative to uncovered digesters. After about three months, this decreased to about a threefold reduction in odour emission rate, which was maintained over the remainder of the trial. The covers did not alter methane emission rates. Carbon dioxide emission rates varied according to cover type. Performance of the covers was attributed to the physical characteristics of the cover materials and changes in liquor composition. The reductions in odour emission indicate that these covers offer a cost-effective method for odour control.
Resumo:
Farmlets, each of 20 cows, were established to field test five milk production systems and provide a learning platform for farmers and researchers in a subtropical environment. The systems were developed through desktop modelling and industry consultation in response to the need for substantial increases in farm milk production following deregulation of the industry. Four of the systems were based on grazing and the continued use of existing farmland resource bases, whereas the fifth comprised a feedlot and associated forage base developed as a greenfield site. The field evaluation was conducted over 4 years under more adverse environmental conditions than anticipated with below average rainfall and restrictions on irrigation. For the grazed systems, mean annual milk yield per cow ranged from 6330 kg/year (1.9 cows/ha) for a herd based on rain-grown tropical pastures to 7617 kg/year (3.0 cows/ha) where animals were based on temperate and tropical irrigated forages. For the feedlot herd, production of 9460 kg/cow.year (4.3 cows/ha of forage base) was achieved. For all herds, the level of production achieved required annual inputs of concentrates of similar to 3 t DM/animal and purchased conserved fodder from 0.3 to 1.5 t DM/animal. This level of supplementary feeding made a major contribution to total farm nutrient inputs, contributing 50% or more of the nitrogen, phosphorus and potassium entering the farming system, and presents challenges to the management of manure and urine that results from the higher stocking rates enabled. Mean annual milk production for the five systems ranged from 88 to 105% of that predicted by the desktop modelling. This level of agreement for the grazed systems was achieved with minimal overall change in predicted feed inputs; however, the feedlot system required a substantial increase in inputs over those predicted. Reproductive performance for all systems was poorer than anticipated, particularly over the summer mating period. We conclude that the desktop model, developed as a rapid response to assist farmers modify their current farming systems, provided a reasonable prediction of inputs required and milk production. Further model development would need to consider more closely climate variability, the limitations summer temperatures place on reproductive success and the feed requirements of feedlot herds.
Resumo:
This project was designed to provide the structural softwood processing industry with the basis for improved green and dry grading to allow maximise MGP grade yields, consistent product performance and reduced processing costs. To achieve this, advanced statistical techniques were used in conjunction with state-of-the-art property measurement systems. Specifically, the project aimed to make two significant steps forward for the Australian structural softwood industry: • assessment of technologies, both existing and novel, that may lead to selection of a consistent, reliable and accurate device for the log yard and green mill. The purpose is to more accurately identify and reject material that will not make a minimum grade of MGP10 downstream; • improved correlation of grading MOE and MOR parameters in the dry mill using new analytical methods and a combination of devices. The three populations tested were stiffness-limited radiata pine, strength-limited radiata pine and Caribbean pine. Resonance tests were conducted on logs prior to sawmilling, and on boards. Raw data from existing in-line systems were captured for the green and dry boards. The dataset was analysed using classical and advanced statistical tools to provide correlations between data sets and to develop efficient strength and stiffness prediction equations. Stiffness and strength prediction algorithms were developed from raw and combined parameters. Parameters were analysed for comparison of prediction capabilities using in-line parameters, off-line parameters and a combination of in-line and off-line parameters. The results show that acoustic resonance techniques have potential for log assessment, to sort for low stiffness and/or low strength, depending on the resource. From the log measurements, a strong correlation was found between the average static MOE of the dried boards within a log and the predicted value. These results have application in segregating logs into structural and non-structural uses. Some commercial technologies are already available for this application such as Hitman LG640. For green boards it was found that in-line and laboratory acoustic devices can provide a good prediction of dry static MOE and moderate prediction for MOR.There is high potential for segregating boards at this stage of processing. Grading after the log breakdown can improve significantly the effectiveness of the mill. Subsequently, reductions in non-structural volumes can be achieved. Depending on the resource it can be expected that a 5 to 8 % reduction in non structural boards won’t be dried with an associated saving of $70 to 85/m3. For dry boards, vibration and a standard Metriguard CLT/HCLT provided a similar level of prediction on stiffness limited resource. However, Metriguard provides a better strength prediction in strength limited resources (due to this equipment’s ability to measure local characteristics). The combination of grading equipment specifically for stiffness related predictors (Metriguard or vibration) with defect detection systems (optical or X-ray scanner) provides a higher level of prediction, especially for MOR. Several commercial technologies are already available for acoustic grading on board such those from Microtec, Luxscan, Falcon engineering or Dynalyse AB for example. Differing combinations of equipment, and their strategic location within the processing chain, can dramatically improve the efficiency of the mill, the level of which will vary depending of the resource. For example, an initial acoustic sorting on green boards combined with an optical scanner associated with an acoustic system for grading dry board can result in a large reduction of the proportion of low value low non-structural produced. The application of classical MLR on several predictors proved to be effective, in particular for MOR predictions. However, the usage of a modern statistics approach(chemometrics tools) such as PLS proved to be more efficient for improving the level of prediction. Compared to existing technologies, the results of the project indicate a good improvement potential for grading in the green mill, ahead of kiln drying and subsequent cost-adding processes. The next stage is the development and refinement of systems for this purpose.
Influence of cyclonic winds on the performance of hardwood plantations in tropical north Queensland.
Resumo:
Severe Tropical Cyclone Yasi crossed the far north Queensland coast at Mission Beach on February 3rd, 2011, shattering the regions developing hardwood plantation industry. The cyclone’s path covered the primary areas of hardwood and softwood plantations in this region, causing widespread destruction. The extent of cyclone damage, coupled with the weak international economy has resulted in a severe decline in industry confidence for the future of timber plantations in this region. This report reviews the impacts of Severe TC Yasi on the performance of key hardwood plantation species in north Queensland. It summarises the influence of species, genetics, plantation design, management and age on plantation resilience. The information will contribute to a “Best Practice Guide for Timber Plantations in Cyclonic Areas” to be produced by Timber Queensland. This will assist companies with future plantation investment decisions in the tropical cyclone zone. 2 200 trees were assessed, including 44 species at 32 localities located from Daintree to Townsville. Data are also presented for a post-cyclone assessment of 5 900 African mahogany trees on four sites in the Ingham region. A report prepared for the Timber Queensland project: Best Practice Guide for Timber Plantations in Cyclonic Areas.
Resumo:
Sirex woodwasp was detected in Queensland in 2009 and rapidly established in softwood plantations (Pinus radiata and P. taeda) in southern border regions. Biocontrol inoculations of Deladenus siricidicola began soon after, and adults were monitored to assess the success of the programme. Wasp size, sex ratios, emergence phenology and nematode parasitism rates were recorded, along with the assessment of wild-caught females. Patterns varied within and among seasons, but overall, P. taeda appeared to be a less suitable host than P. radiata, producing smaller adults, lower fat body content and fewer females. Sirex emerging from P. taeda also showed lower levels of nematode parasitism, possibly due to interactions with the more abundant blue-stain fungus in this host. Sirex adults generally emerged between November and March, with distinct peaks in January and March, separated by a marked drop in emergence in early February. Temperature provided the best correlate of seasonal emergence, with fortnights with higher mean minimum temperatures having higher numbers of Sirex emerging. This has implications for the anticipated northward spread of Sirex into sub-tropical coastal plantation regions. Following four seasons of inundative release of nematodes in Queensland, parasitism rates remain low and have resulted in only partial sterilization of infected females.