23 resultados para parental stress

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous experiments, increased leaf-Phosphorus (P) content with increasing P supply enhanced the individual leaf expansion and water content of fresh cotton leaves in a severely drying soil. In this paper, we report on the bulk water content of leaves and its components, free and bound water, along with other measures of plant water status, in expanding cotton leaves of various ages in a drying soil with different P concentrations. The bound water in living tissue is more likely to play a major role in tolerance to abiotic stresses by maintaining the structural integrity and/or cell wall extensibility of the leaves, whilst an increased amount of free water might be able to enhance solute accumulation, leading to better osmotic adjustment and tolerance to water stress, and maintenance of the volumes of sub-cellular compartments for expansive leaf growth. There were strong correlations between leaf-P%, leaf water (total, free and bound water) and leaf expansion rate (LER) under water stress conditions in a severely drying soil. Increased soil-P enhanced the uptake of P from a drying soil, leading to increased supply of osmotically active inorganic solutes to the cells in growing leaves. This appears to have led to the accumulation of free water and more bound water, ultimately leading to increased leaf expansion rates as compared to plants in low P soil under similar water stress conditions. The greater amount of bound and free water in the high-P plants was not necessarily associated with changes in cell turgor, and appears to have maintained the cell-wall properties and extensibility under water stressed conditions in soils that are nutritionally P-deficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seed cotton yield and morphological changes in leaf growth were examined under drying soil with different phosphorus (P) concentrations in a tropical climate. Frequent soil drying is likely to induce a decrease in nutrients particularly P due to reduced diffusion and poor uptake, in addition to restrictions in available water, with strong interactive effects on plant growth and functioning. Increased soil P in field and in-ground soil core studies increased the seed cotton yield and related morphological growth parameters in a drying soil, with hot (daily maximum temperature >33°C) and dry conditions (relative humidity, 25% to 35%), particularly during peak boll formation and filling stage. The soil water content in the effective rooting zone (top 0.4 m) decreased to -1.5 MPa by day 5 of the soil drying cycle. However, the increased seed cotton yield for the high-P plants was closely related to increasing leaf area with increased P supply. Plant height, leaf fresh mass and leaf area per plant were positively related to the leaf P%, which increased with increasing P supply. Low P plants were lower in plant height, leaf area, and leaf tissue water in the drying soil. Individual leaf area and the water content of the fresh leaf (ratio of dry mass to fresh mass) were significantly dependent on leaf P%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen (N) is the largest agricultural input in many Australian cropping systems and applying the right amount of N in the right place at the right physiological stage is a significant challenge for wheat growers. Optimizing N uptake could reduce input costs and minimize potential off-site movement. Since N uptake is dependent on soil and plant water status, ideally, N should be applied only to areas within paddocks with sufficient plant available water. To quantify N and water stress, spectral and thermal crop stress detection methods were explored using hyperspectral, multispectral and thermal remote sensing data collected at a research field site in Victoria, Australia. Wheat was grown over two seasons with two levels of water inputs (rainfall/irrigation) and either four levels (in 2004; 0, 17, 39 and 163 kg/ha) or two levels (in 2005; 0 and 39 kg/ha N) of nitrogen. The Canopy Chlorophyll Content Index (CCCI) and modified Spectral Ratio planar index (mSRpi), two indices designed to measure canopy-level N, were calculated from canopy-level hyperspectral data in 2005. They accounted for 76% and 74% of the variability of crop N status, respectively, just prior to stem elongation (Zadoks 24). The Normalised Difference Red Edge (NDRE) index and CCCI, calculated from airborne multispectral imagery, accounted for 41% and 37% of variability in crop N status, respectively. Greater scatter in the airborne data was attributable to the difference in scale of the ground and aerial measurements (i.e., small area plant samples against whole-plot means from imagery). Nevertheless, the analysis demonstrated that canopy-level theory can be transferred to airborne data, which could ultimately be of more use to growers. Thermal imagery showed that mean plot temperatures of rainfed treatments were 2.7 °C warmer than irrigated treatments (P < 0.001) at full cover. For partially vegetated fields, the two-Dimensional Crop Water Stress Index (2D CWSI) was calculated using the Vegetation Index-Temperature (VIT) trapezoid method to reduce the contribution of soil background to image temperature. Results showed rainfed plots were consistently more stressed than irrigated plots. Future work is needed to improve the ability of the CCCI and VIT methods to detect N and water stress and apply both indices simultaneously at the paddock scale to test whether N can be targeted based on water status. Use of these technologies has significant potential for maximising the spatial and temporal efficiency of N applications for wheat growers. ‘Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two field experiments using maize (Pioneer 31H50) and three watering regimes [(i) irrigated for the whole crop cycle, until anthesis, (ii) not at all (experiment 1) and (iii) fully irrigated and rain grown for the whole crop cycle (experiment 2)] were conducted at Gatton, Australia, during the 2003-04 season. Data on crop ontogeny, leaf, sheath and internode lengths and leaf width, and senescence were collected at 1- to 3-day intervals. A glasshouse experiment during 2003 quantified the responses of leaf shape and leaf presentation to various levels of water stress. Data from experiment 1 were used to modify and parameterise an architectural model of maize (ADEL-Maize) to incorporate the impact of water stress on maize canopy characteristics. The modified model produced accurate fitted values for experiment 1 for final leaf area and plant height, but values during development for leaf area were lower than observed data. Crop duration was reasonably well fitted and differences between the fully irrigated and rain-grown crops were accurately predicted. Final representations of maize crop canopies were realistic. Possible explanations for low values of leaf area are provided. The model requires further development using data from the glasshouse study and before being validated using data from experiment 2 and other independent data. It will then be used to extend functionality in architectural models of maize. With further research and development, the model should be particularly useful in examining the response of maize production to water stress including improved prediction of total biomass and grain yield. This will facilitate improved simulation of plant growth and development processes allowing investigation of genotype by environment interactions under conditions of suboptimal water supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is essential to provide experimental evidence and reliable predictions of the effects of water stress on crop production in the drier, less predictable environments. A field experiment undertaken in southeast Queensland, Australia with three water regimes (fully irrigated, rainfed and irrigated until late canopy expansion followed by rainfed) was used to compare effects of water stress on crop production in two maize (Zea mays L.) cultivars (Pioneer 34N43 and Pioneer 31H50). Water stress affected growth and yield more in Pioneer 34N43 than in Pioneer 31H50. A crop model APSIM-Maize, after having been calibrated for the two cultivars, was used to simulate maize growth and development under water stress. The predictions on leaf area index (LAI) dynamics, biomass growth and grain yield under rain fed and irrigated followed by rain fed treatments was reasonable, indicating that stress indices used by APSIM-Maize produced appropriate adjustments to crop growth and development in response to water stress. This study shows that Pioneer 31H50 is less sensitive to water stress and thus a preferred cultivar in dryland conditions, and that it is feasible to provide sound predictions and risk assessment for crop production in drier, more variable conditions using the APSIM-Maize model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eighty six full-sib Corymbia F1 hybrid families (crosses between C. torelliana and four spotted gum taxa: C. citriodora subsp. variegata, C. citriodora subsp. citriodora, C. henryi and C. maculata), were planted in six trials across six disparate sites in south-eastern Queensland to evaluate their productivity and determine their potential utility for plantation forestry. In each trial, the best-growing 20% of hybrid families grew significantly faster (P=0.05) than open-pollinated seedlots of the parent species Corymbia citriodora subsp. variegata, ranging from 107% to 181% and 127% to 287% of the height and diameter respectively. Relative performance of hybrid families growing on more than one site displayed consistency in ranking for growth across sites and analysis showed low genotype-by-environment interaction. Heritability estimates based on female and male parents across two sites at age six years for height and diameter at breast height, were high (0.62±0.28 to 0.64±0.35 and 0.31±0.21 to 0.69±0.37 respectively), and low to moderate (0.03±0.04 to 0.33±0.22) for stem straightness, branch size, incidence of ramicorns, and frost and disease resistance traits at ages one to three years. The proportion of dominance variance for height and diameter had reduced to zero by age six years. Based on these promising results, further breeding and pilot-scale family forestry and clonal forestry deployment is being undertaken. These results have also provided insights regarding the choice of a future hybrid breeding strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on the physiological response of crop plants to drying soils and subsequent water stress has grouped plant behaviours as isohydric and anisohydric. Drying soil conditions, and hence declining soil and root water potentials, cause chemical signals—the most studied being abscisic acid (ABA)—and hydraulic signals to be transmitted to the leaf via xylem pathways. Researchers have attempted to allocate crops as isohydric or anisohydric. However, different cultivars within crops, and even the same cultivars grown in different environments/climates, can exhibit both response types. Nevertheless, understanding which behaviours predominate in which crops and circumstances may be beneficial. This paper describes different physiological water stress responses, attempts to classify vegetable crops according to reported water stress responses, and also discusses implications for irrigation decision-making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large numbers of Sagmariasus verreauxi are trapped and hand collected in Australia, but discarded due to size and quota restrictions, and under the unevaluated assumption of few impacts. To test the validity of enforced discarding, trapped and hand-collected S. verreauxi (49-143. mm carapace length - CL) were examined for external damage, placed into cages, transferred to aquaria and monitored (with controls) over three months. Haemolymph was non-repetitively sampled immediately and at one, three, and seven days to quantify stress. Most trapped (64%) and hand-collected (79%) specimens were undersized (<104. mm CL), with the latter method yielding broader ranges of sizes and moult stages. Within-trap Octopus tetricus predation caused the only mortalities (3.3%). Hand collection resulted in much greater antennae and pereopod loss than trapping (53 vs. 4%) but, compared to controls, both methods evoked benign physiological responses that resolved within a week. While most wounded S. verreauxi regenerated all or some missing appendages post-moult, their mean CLs were less than those from intact conspecifics. Simple strategies, including larger mesh sizes, and/or installing modifications to reduce bycatch in traps, careful hand collection, and appropriate release techniques might minimise impacts (including predation) to unwanted S. verreauxi, and help to control stock exploitation. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the post-rainy (rabi) season in India around 3 million tonnes of sorghum grain is produced from 5.7 million ha of cropping. This underpins the livelihood of about 5 million households. Severe drought is common as the crop grown in these areas relies largely on soil moisture stored during the preceding rainy season. Improvement of rabi sorghum cultivars through breeding has been slow but could be accelerated if drought scenarios in the production regions were better understood. The sorghum crop model within the APSIM (Agricultural Production Systems sIMulator) platform was used to simulate crop growth and yield and the pattern of crop water status through each season using available historical weather data. The current model reproduced credibly the observed yield variation across the production region (R2=0.73). The simulated trajectories of drought stress through each crop season were clustered into five different drought stress patterns. A majority of trajectories indicated terminal drought (43%) with various timings of onset during the crop cycle. The most severe droughts (25% of seasons) were when stress began before flowering and resulted in failure of grain production in most cases, although biomass production was not affected so severely. The frequencies of drought stress types were analyzed for selected locations throughout the rabi tract and showed different zones had different predominating stress patterns. This knowledge can help better focus the search for adaptive traits and management practices to specific stress situations and thus accelerate improvement of rabi sorghum via targeted specific adaptation. The case study presented here is applicable to other sorghum growing environments. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences in morphology have provided a basis for detecting natural interspecific hybridisation in forest trees for decades but have come to prominence again more recently as a means for directly measuring gene flow from planted forests. Here we examined the utility of seedling morphology for hybrid discrimination in three hybrid groups relevant to the monitoring of gene flow from plantings of Corymbia (L.D. Pryor & L.A.S. Johnson ex Brooker) taxa in subtropical Australia. Thirty leaf and stem characters were assessed on 907 8-month old seedlings from four parental and six hybrid taxa grown in a common garden. Outbred F1 hybrids between spotted gums (Corymbia citriodora subspecies variegata, C. citriodora subspecies citriodora and Corymbia henryi) tended to more closely resemble their maternal Corymbia torelliana parent and the most discriminating characters were the ratio of blade length to maximum perpendicular width, the presence or absence of a lignotuber, and specific leaf weight. Assignment of individuals into genealogical classes based on a multivariate model limited to a set of the more discriminating and independent characters was highest in the hybrid group, where parental taxa were genetically most divergent. Overall power to resolve among outbred F1 hybrids from both parental taxa was low to moderate, but this may not be a limitation to its likely major application of identifying hybrids in seedlots from native spotted gum stands. Advanced generation hybrids (outbred F2 and outbred backcrosses) were more difficult to resolve reliably due to the higher variances of hybrid taxa and the tendency of backcrosses to resemble their recurrent parents. Visual assessments of seedling morphology may provide a filter allowing screening of the large numbers needed to monitor gene flow, but will need to be combined with other hybrid detection methods to ensure hybrids are detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of "stay-green" in sorghum and its positive correlation with yield increases has encouraged attempts to incorporate "stay-green"-like traits into the genomes of other commercially important cereal crops. However, knowledge on the effects of "stay-green" expression on grain quality under extreme physiological stress is limited. This study examines impacts of "stay-green"-like expression on starch biosynthesis in barley (Hordeum vulgare L.) grain under mild, severe, and acute water stress conditions induced at anthesis. The proportions of long amylopectin branches and amylose branches in the grain of Flagship (a cultivar without "stay-green"-like characteristics) were higher at low water stress, suggesting that water stress affects starch biosynthesis in grain, probably due to early termination of grain fill. The changes in long branches can affect starch properties, such as the rates of enzymatic degradation, and hence its nutritional value. By contrast, grain from the "stay-green"-like cultivar (ND24260) did not show variation in starch molecular structure under the different water stress levels. The results indicate that the cultivar with "stay-green"-like traits has a greater potential to maintain starch biosynthesis and quality in grain during drought conditions, making the "stay-green"-like traits potentially useful in ensuring food security. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vachellia nilotica ssp. indica (hereafter, V. n. indica) is an important tree weed in Australia. Its dense populations induce undesirable changes in the vast areas of northern Australia. Because chemical and mechanical management options appear unviable for various reasons, biological management of this tree is considered a better option. Among the many trialled arthropods in Australian context, Anomalococcus indicus, a lecanodiaspid native to India, has been identified as a potent-candidate, since in India, its native terrain, it is the most widespread and occurs throughout the year. Severe infestations of A. indicus cause defoliation, wilting and death of branches, and occasionally the tree. Populations of A. indicus have been brought into Australia and are being tested for its host specificity under quarantine conditions. This article reports the physiological damage and stress it inflicts in the shoots of V. n. indica. Younger-nymphal instars of A. indicus feed on cortical-parenchyma cells of young stems, whereas the older instars and adults feed from the phloem of old stems. Two conspicuous responses of V. n. indica arising in response to the feeding action of A. indicus are changes in the cell-wall dynamics and irregular cell divisions. The feeding action of A. indicus elicits a sequence of reactions in the stem tissues of V. n. indica such as differentiation of thick-walled elements in the outer cortical parenchyma, differential thickening of cells with supernumerary layers of either suberin or lignin, proliferations of parenchyma and phloem, wall thickening and obliteration of inner lumen of phloem cells, and the sieve plates plugged with callosic deposits. The responses are the culminations of interaction between the virulence factor (one or more of the salivary proteins?) from A. indicus and the resistance factor in V. n. indica. We have analysed structural changes in the context of their functions, by comparing the feeding action of A. indicus with that of other hemipteroids. From the level of stress it induces, this study confirms that A. indicus has the potential to be an effective biological management of V. n. indica in Australia. © 2014 © 2014 Taylor & Francis and Aboricultural Association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tension banding castration of cattle is gaining favour because it is relatively simple to perform and is promoted by retailers of the banders as a humane castration method. Two experiments were conducted, under tropical conditions using Bos indicus bulls comparing tension banding (Band) and surgical (Surgical) castration of weaner (7–10 months old) and mature (22–25 months old) bulls with and without pain management (NSAID (ketoprofen) or saline injected intramuscularly immediately prior to castration). Welfare outcomes were assessed using a range of measures; this paper reports on some physiological, morbidity and productivity-related responses to augment the behavioural responses reported in an accompanying paper. Blood samples were taken on the day of castration (day 0) at the time of restraint (0 min) and 30 min (weaners) or 40 min (mature bulls), 2 h, and 7 h; and days 1, 2, 3, 7, 14, 21 and 28 post-castration. Plasmas from day 0 were assayed for cortisol, creatine kinase, total protein and packed cell volume. Plasmas from the other samples were assayed for cortisol and haptoglobin (plus the 0 min sample). Liveweights were recorded approximately weekly to 6 weeks and at 2 and 3 months post-castration. Castration sites were checked at these same times to 2 months post-castration to score the extent of healing and presence of sepsis. Cortisol concentrations (mean ± s.e. nmol/L) were significantly (P < 0.05) higher in the Band (67 ± 4.5) compared with Surgical weaners (42 ± 4.5) at 2 h post-castration, but at 24 h post-castration were greater in the Surgical (43 ± 3.2) compared with the Band weaners (30 ± 3.2). The main effect of ketoprofen was on the cortisol concentrations of the mature Surgical bulls; concentrations were significantly reduced at 40 min (47 ± 7.2 vs. 71 ± 7.2 nmol/L for saline) and 2 h post-castration (24 ± 7.2, vs. 87 ± 7.2 nmol/L for saline). Ketoprofen, however, had no effect on the Band mature bulls, with their cortisol concentrations averaging 54 ± 5.1 nmol/L at 40 min and 92 ± 5.1 nmol/L at 2 h. Cortisol concentrations were also significantly elevated in the Band (83 ± 3.0 nmol/L) compared with Surgical mature bulls (57 ± 3.0 nmol/L) at weeks 2–4 post-castration. The timing of this elevation coincided with significantly elevated haptoglobin concentrations (mg/mL) in the Band bulls (2.97 ± 0.102 for mature bulls and 1.71 ± 0.025 for weaners, vs. 2.10 ± 0.102 and 1.45 ± 0.025 respectively for the Surgical treatment) and evidence of slow wound healing and sepsis in both the weaner (0.81 ± 0.089 not healed at week 4 for Band, 0.13 ± 0.078 for Surgical) and mature bulls (0.81 ± 0.090 at week 4 for Band, 0.38 ± 0.104 for Surgical). Overall, liveweight gains of both age groups were not affected by castration method. The findings of acute pain, chronic inflammation and possibly chronic pain in the mature bulls at least, together with poor wound healing in the Band bulls support behavioural findings reported in the accompanying paper and demonstrate that tension banding produces inferior welfare outcomes for weaner and mature bulls compared with surgical castration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flying-foxes (pteropid bats) are the natural host of Hendra virus, a recently emerged zoonotic virus responsible for mortality or morbidity in horses and humans in Australia since 1994. Previous studies have suggested physiological and ecological risk factors for infection in flying-foxes, including physiological stress. However, little work has been done measuring and interpreting stress hormones in flying-foxes. Over a 12-month period, we collected pooled urine samples from underneath roosting flying-foxes, and urine and blood samples from captured individuals. Urine and plasma samples were assayed for cortisol using a commercially available enzyme immunoassay. We demonstrated a typical post-capture stress response in flying-foxes, established urine specific gravity as an attractive alternative to creatinine to correct urine concentration, and established population-level urinary cortisol ranges (and geometric means) for the four Australian species: Pteropus alecto 0.5–305.1 ng/mL (20.1 ng/mL); Pteropus conspicillatus 0.3–370.9 ng/mL (18.9 ng/mL); Pteropus poliocephalus 0.3–311.3 ng/mL (10.1 ng/mL); Pteropus scapulatus 5.2–205.4 ng/mL (40.7 ng/mL). Geometric means differed significantly except for P. alecto and P. conspicillatus. Our approach is methodologically robust, and has application both as a research or clinical tool for flying-foxes, and for other free-living colonial wildlife species